

ISSN: 2359-1048 Dezembro 2019

ANÁLISE DA EFICIÊNCIA POR MEIO DA ANÁLISE ENVOLTÓRIA DE DADOS (DEA) EM COOPERATIVAS DE ELETRIFICAÇÃO (CEs) E DEMAIS DISTRIBUIDORAS DE ENERGIA QUE ATUAM NO SUL DO BRASIL

LORIMAR FRANCISCO MUNARETTOUNIVERSIDADE FEDERAL DE SANTA MARIA - UFSM

JEFFERSON ALVES DA COSTA JÚNIOR UNIVERSIDADE FEDERAL DE SANTA MARIA - UFSM

JULIO ARAUJO CARNEIRO DA CUNHA UNIVERSIDADE NOVE DE JULHO UNINOVE

ANÁLISE DA EFICIÊNCIA POR MEIO DA ANÁLISE ENVOLTÓRIA DE DADOS (DEA) EM COOPERATIVAS DE ELETRIFICAÇÃO (CEs) E DEMAIS DISTRIBUIDORAS DE ENERGIA QUE ATUAM NO SUL DO BRASIL

1.Introdução

A partir da década de 90, com a privatização do setor elétrico brasileiro, criou-se um novo modelo desverticalizado, aliado à emergência de um mercado de energia elétrica que passou a ser formado por empresas de geração, transmissão, distribuição e comercialização de energia elétrica.

De acordo com a Aneel (2019), o serviço público de distribuição de energia elétrica no Brasil é realizado por concessionárias, permissionárias e autorizadas. Atualmente (2018), atuam no mercado de distribuição 53 Concessionárias, 43 Permissionárias e 13 Autorizadas, totalizando 109 agentes, entre públicos, privados e de economia mista.

A partir do novo modelo as CEs foram intimadas a se regularizarem pela Agência Nacional de Energia Elétrica - ANEEL, na condição de permissionárias na distribuição e comercialização de energia elétrica ou na condição de autorizadas (agente autorizado), estas com predomínio a atender consumidores rurais. Assim, as CEs passam a realizar um serviço público sob o regime de permissão ou autorização do governo (CAMARGO, 2010).

Como agentes de um serviço público as CEs são monitoradas pela Agência Nacional de Energia Elétrica – ANEEL e passam a ter o mesmo tratamento oferecido às outras grandes concessionárias de distribuição e comercialização de energia elétrica como a CEEE - D, RGE, CELG, AES Eletropaulo, CELESC, Light etc.

Nesta perspectiva, Koch (2002) explica que como responsáveis no desenvolvimento de um serviço público as cooperativas de eletrificação devem operar, em termos de <u>eficiência operacional</u> em seus processos, sobre uma base composta por princípios regidos por lei, dentre os quais a: modicidade de tarifas, equilíbrio econômico-financeiro.

- a) A modicidade tarifária corresponde à prática de tarifas acessíveis (módicas) a todos os consumidores de energia da CE. (...) implica no dever do Estado de fixar as tarifas em valor que viabilize o acesso da coletividade ao serviço e que seja compatível com a natureza social do serviço (GROTTI, 2000).
- b) O princípio do equilíbrio econômico constitui-se pela, (...) possível previsão de preços e custos, da adoção de meios, que entre as estipulações protejam a execução e a prestação, de cláusulas que autorizem, em termos sempre atuais, no equilíbrio econômico, uma justa ou equivalente remuneração (SOBRINHO, 1981). A regulação procura equilibrar esses princípios, por meio da fixação de tarifas aos usuários do serviço de energia elétrica que preserve tanto o lado da concessionária quanto ao do consumidor (PELEGRINI et al, 2004).

Na aquisição da energia, as CEs, que atuam como permissionárias são subvencionadas com descontos em valores a serem concedidos pela concessionária de distribuição supridora de energia., conforme previsto na Lei nº13.360/2016.

Este contexto exige que as CEs e demais distribuidoras de energia, adotem controles de seus gastos com custos e despesas operacionais, principalmente em relação às perdas técnicas, perdas por fraudes "gatos", desperdícios etc., sob pena de não obterem retornos.

A análise da eficiência por meio da DEA¹ - Análise envoltória de dados possibilita verificar níveis de eficiência de processos. Ao evidenciar os níveis de eficiência, este estudo contribui com informações aos associados, as diretorias e demais *stakeholders* das CEs e demais distribuidoras de energia.

1

¹ Análise envoltória de Dados – DEA, foi desenvolvido por Charles, Cooper e Rhodes (1978) e Farrel (1957), com o objetivo de calcular a eficiência relativa de unidades tomadoras de decisão, denominadas DMUs – do Inglês Decision Making Units - com múltiplos insumos (*inputs*) e produtos (*outputs*).

Para as diretorias das CEs e demais distribuidoras, os resultados podem servir como auxílio na tomada de decisão sobre pontos ineficientes nos processos de distribuição de energia, bem como possibilita informações para o realinhamento de estratégias em relação às distribuidoras que apresentam maior grau de eficiência.

Diante do exposto foi elaborada a seguinte questão problema. Qual é o *ranking* de eficiência entre o número de unidades consumidoras, consumo de MWh e o montante de receitas brutas obtidas em cooperativas de eletrificação (CEs) e demais distribuidoras de distribuição de energia situadas na região sul do Brasil?

O objetivo geral do estudo consiste em verificar os níveis de eficiência das CEs, e em nas demais distribuidoras de energia na região sul do Brasil, utilizando como base o número de consumidores, consumo de MWh e as receitas com fornecimento de energia sem os tributos dos anos de 2015, 2016, 2017 e 2018.

A busca pela eficiência é ponto estratégico em cooperativas de eletrificação e demais distribuidoras de energia. Pois com preços da energia pré-estabelecidos pelo agente regulador (ANEEL), a lucratividade (sobras) está ligada primordialmente do aumento de cargas de energia distribuída, pelo aumento de unidades consumidoras e também em decorrência de níveis menores custos e despesas estruturais na distribuição da energia.

Além da introdução o segundo capítulo apresenta a revisão teórica, na sequência a metodologia, a quarta seção os resultados do estudo e por fim as conclusões.

2. Revisão teórica

Entre as diversas técnicas de análise da eficiência a Análise Envoltória de Dados (DEA), tem demonstrado grande importância por transformar dados em informações que podem apoiar as decisões nas organizações.

2.1 Análise envoltória de dados (DEA)

A Análise Envoltória de dados (*Data Envelopment Analysis* – DEA) consiste em um método não paramétrico de programação matemática que é muito utilizada na medição da eficiência relativa de Unidades Tomadoras de Decisão (DMUs) em um sistema com múltiplas variáveis de entrada (*inputs*) e de saída (*outputs*) (JUNIOR et al., 2018).

A DEA tem como objetivo a comparação de certo número de DMUs que desempenham tarefas semelhantes, se diferenciando nas quantidades de *inputs* consumidos e de *outputs* produzidos (MELLO et al., 2003). Esse modelo empírico foi proposto por Farrell (1957), em que sugeriu a determinação da eficiência de uma organização e comparar a mesma com o melhor nível de eficiência até então observado (VILELA et al., 2007).

De acordo com GOLANY & ROLL, 1989, para que os modelos DEA sejam implementados é preciso seguir três fases, sendo elas:

Definir e selecionar as DMU's a entrarem na análise. Selecionar as variáveis (*inputs* e *outputs*) relevantes e apropriadas para o estabelecimento da eficiência relativa das DMU's selecionadas. Aplicar os modelos DEA (Definir a orientação desse modelo: para *input* ou *output*).

De acordo com Soares de Mello et al. (2004) a Análise Envoltória de Dados é formada por diversos modelos, mas, existem dois modelos que são considerados os clássicos. O modelo CCR (de Charnes, Cooper e Rhodes) e o BBC (de Banker, Charles e Cooper).

Modelo CCR

O modelo DEA chamado CCR, também conhecido mundialmente por CRS-Constant Returns to Scale. (CHARNES et al., 1978) considera retornos de escala constantes, isto é, qualquer variação nas entradas (*inputs*) produz variação proporcional nas saídas (*outputs*).

De acordo com Mello *et al* (2005), o modelo CCR, constrói uma superfície linear por partes, não paramétricas, envolvendo os dados.

A figura 2 apresenta a formulação do Modelo CCR do DEA.

Orientação Insumo	Orientação Produto					
$Maximizar h_k = \sum_{r=1}^{s} u_r y_{rk},$	$Minimizar h_k = \sum_{i=1}^n v_i x_{ik}, \qquad (3.5)$					
sujeito a	sujeito a					
$\sum_{r=1}^{m} u_r y_{rj} - \sum_{i=1}^{n} v_i x_{ij} \le 0$	$\sum_{r=1}^{m} u_r y_{rj} - \sum_{i=1}^{n} v_i x_{ij} \le 0 $ (3.6)					
$\sum_{i=1}^{n} \nu_i x_{ik} = 1$	$\sum_{r=1}^{m} u_r y_{rk} = 1 {(3.7)}$					
$u_r, v_i \ge 0$	$u_r, v_i \ge 0 \tag{3.8}$					
y = produtos; $x = insumos$; $u, v = pesos$	y = produtos; x = insumos; u, v = pesos					
r = 1,,m; i = 1,,n; j = 1,,N	r = 1,,m; i = 1,,n; j = 1,,N					

Fonte: adaptado de Mello et al. Curso de análise envoltória de dados. XXXVII -Simpósio Brasileiro de Pesquisa Operacional. 2005.

Modelo BBC

O modelo VRS (Variable Returns to Scale), ou BCC (BANKER et al., 1984), considera retornos variáveis de escala, com a finalidade de analisar economias com rendimentos de escala variáveis não assumindo proporcionalidade entre inputs e outputs. Apresenta-se na equação (figura 3) a formulação do problema de programação fracionária, previamente linearizada para esse modelo (BANKER et al., 1984).

De acordo com Neves Júnior *et al.* (2010), a formulação do modelo BCC, pressupõe que as unidades avaliadas apresentem retornos variáveis de escala, ou seja os retornos consideram que o acréscimo em uma unidade de *inputs* pode gerar um acréscimo não proporcional no volume de produtos, permitindo identificar uma diferença entre a eficiência técnica e a eficiência de escala.

A figura 3 apresenta a formulação do Modelo VRS ou BBC do DEA.

Orientação Insumo	Orientação Produto						
$Minimizar h_k = \sum_{i=1}^n v_i x_{ik},$	$Maximizar \sum_{r=1}^{m} u_r y_{rk} - u_k, $ (3.9)						
sujeito a	sujeito a						
$\sum_{r=1}^{m} u_r y_{rj} - \sum_{i=1}^{n} v_i x_{ij} \le 0$	$\sum_{i=1}^{n} v_i x_{ik} = 1 \tag{3.10}$						
$\sum_{r=1}^{m} u_r \mathcal{Y}_{rk} = 1$	$\sum_{i=1}^{m} u_{r} y_{rj} - \sum_{i=1}^{n} v_{i} x_{ij} - u_{k} \le 0$ $u_{r}, v_{i} \ge 0$ (3.11) (3.12)						
$u_r, v_i \ge 0$	$u_r, v_i \ge 0 \tag{3.12}$						
y = produtos; $x = insumos$; $u, v = pesos$	y = produtos; $x = insumos$; $u, v = pesos$						
r = 1,,m; i = 1,,n; j = 1,,N	r = 1,,m; i = 1,,n; j = 1,,N						

Fonte: adaptado de Mello *et al.* Curso de análise envoltória de dados. XXXVII -Simpósio Brasileiro de Pesquisa Operacional. 2005.

O modelo BBC ou VRS orientado à *output* (produto), será utilizado neste estudo.

Barros e Garcia (2006) *apud* Rafaeli (2009), explicam que sempre que há formação de *ranking* utilizando o DEA na maioria das vezes várias DMUs ficam com 100% de pontuação de eficiência, utilizando diferentes modelos visto que, essa é uma limitação da fronteira de eficiência clássica calculada pela análise envoltória de dados em distinguir as unidades eficientes.

Diante do exposto utilizou-se também no estudo a fronteira invertida DEA que é a fronteira pessimista das DMU's.

A determinação do ranking foi realizada por meio do cálculo da eficiência composta normalizada. Os cálculos da eficiência composta e eficiência normalizada foram realizados por meio dos procedimentos preconizados pelos autores NEVES; VASCONCELOS; BRITO (2012) e MEZA *et al.* 2005.

Figura 4 – Fórmula da eficiência composta

Eficiência Composta = Eficiência Padrão+ (1 - Otimista Invertida (pessimista)/2

Angulo-Meza *et al.* (2005) explicam que a eficiência composta e obtida por meio da média aritmética entre a eficiência padrão e o valor obtido da subtração da eficiência invertida pela unidade.

Figura 5 – Fórmula da eficiência composta normalizada

Eficiência Composta Normalizada=Eficiência Composta/Máx.(Eficiência Composta)

O valor da eficiência composta normalizada, é obtido pela divisão da eficiência composta, pelo maior valor entre os valores de eficiência composta Ângulo-Meza et al. (2005).

Os cálculos de eficiência padrão, invertida, composta e composta normalizada, apresentados no estudo foram determinados por meio do SIAD-Sistema Integrado de Apoio à Decisão

2.1. Distribuidoras de energia

No Brasil as empresas distribuidoras de energia, podem operar sob a forma de concessionárias, permissionárias ou autorizadas de um serviço público.

De acordo com o art. 2º da Lei nº 8987/1995, *a concessão de serviço público* é "a delegação de sua prestação, feita pelo poder concedente, mediante licitação, na modalidade de concorrência, à pessoa jurídica ou consórcio de empresas que demonstre capacidade para seu desempenho, por sua conta e risco e por prazo determinado".

Oliveira (2017) explica que a permissão de serviço público é a delegação a título precário, mediante licitação, da prestação de serviços públicos, feita pelo poder concedente à pessoa física ou jurídica que demonstre capacidade para seu desempenho, por sua conta e risco.

Por outro lado a concessão de serviço público é precedida de obra *pública que* é "a construção, total ou parcial, conservação, reforma, ampliação ou melhoramento de quaisquer obras de interesse público, delegada pelo poder concedente, mediante licitação, na modalidade concorrência, à pessoa jurídica ou consórcio de empresas que demonstre capacidade para a sua realização, por sua conta e risco, de forma que o investimento da

concessionária seja remunerada e amortizado mediante a explorações do serviço público por prazo determinado.

Já a autorização é um ato administrativo por meio do qual a administração pública possibilita ao particular a realização de alguma atividade de predominante interesse deste, ou a utilização de um bem público.

As cooperativas distribuidoras de energia exercem suas atividades por meio de contratos de concessão, permissão e autorização governamental.

2.2 Cooperativas de eletrificação (CEs)

O primeiro registro do uso de energia elétrica na zona rural foi no ano de 1923, quando João Nogueira de Carvalho instalou eletricidade em sua propriedade no município de Batatais - São Paulo/SP (FECOERGS, 2011).

As primeiras CEs surgiram no Estado do Rio Grande do Sul, no início da década de 1940, primeiramente, por iniciativa de pequenos núcleos urbanos, que pretendiam eletrificar suas residências, posteriormente às cooperativas foram expandindo suas áreas de atuação, englobando ou atingindo, também, a área rural (FUGIMOTO, 2005).

A Cooperativa Força e Luz de Quatro Irmãos, no distrito de José Bonifácio, no município de Erechim – RS, criada no ano de 1941, foi a primeira cooperativa de eletrificação rural, e tinha por objetivo gerar e distribuir energia para a pequena localidade, sede de uma companhia colonizadora da região, que ali se instalou em 1911, a *Jewish Colonization and association* (FECOERGS, 2012). Seu primeiro presidente foi o Sr. Alberto Verminghoff, com outros 22 associados, fundaram a cooperativa para levar energia elétrica até a sede da comunidade de Quatro Irmãos (SIMON, 2011).

Hoje, Quatro Irmãos já é município, embora a cooperativa não esteja mais atuando (PRADO, 2002).

Figura 6 - Sede da primeira cooperativa de eletrificação rural.

Fonte: Adequado do site

http://www.fecoergs.com.br/pagina.php?cont=historia.php&sel=2

De acordo com Rosset *et al* (2009), a falta de interesse das companhias de energia na distribuição de energia elétrica, em áreas rurais distantes dos centros, foi motivo que despertou a criação e organização de CE rural, visando à geração e à distribuição de energia elétrica aos seus associados.

Nas regiões sul e sudeste, as CEs nasceram por esforço comunitário e associativo local. A cultura associativista encontrada em comunidades geradas por colonos de origem europeia também favoreceu o desenvolvimento do sistema cooperativista (COOPERS E LYBRAND, 1997).

No ano de 2018, nos estados da região sul, a distribuição de energia é realizada por 30 (trinta) cooperativas de eletrificação. A figura 7 apresenta os diversos atores envolvidos com as CEs, na condição de permissionárias ou autorizados de um serviço público. Denota-se que as CEs são reguladas e fiscalizadas pela ANEEL.

De acordo com a figura 7, em geral as cooperativas outorgadas na condição de permissionárias adquirem a energia elétrica das concessionárias e realizam a venda aos seus consumidores (associados e não associados).

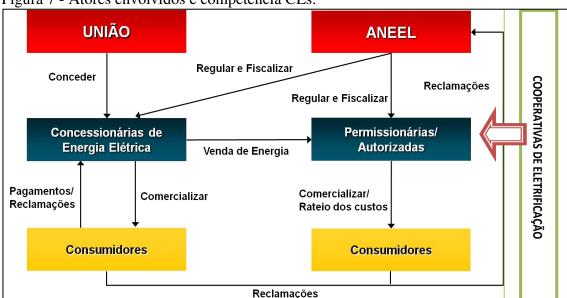


Figura 7 - Atores envolvidos e competência CEs.

Fonte: Adaptado da ANEEL - Audiência Pública Comissão de Agricultura, Pecuária, Abastecimento e Desenvolvimento Rural - Câmara dos Deputados. 02/2006. Brasília/DF.

As CEs, atuando como agentes de um serviço público, devem se adequar, (...) aos condicionantes do serviço público de energia elétrica decorrentes da lei das Concessões de 1995 (Lei nº 8.987 e alterações) e demais determinações da agência reguladora (PELEGRINI, 2004).

As CEs permissionárias possuem a definição de uma área de atuação para fins de regularização, para a qual a cooperativa possui as prerrogativas e a obrigação de prestar o serviço de distribuição de modo exclusivo (PELEGRINI *et al*, 2004). Com área demarcada (área de abrangência garantida) as cooperativas permissionárias se obrigam a atender a um público urbano ou rural, (público indistinto) com tarifas homologadas pela ANEEL, sejam cooperados (associados) ou terceiros, com os mesmos critérios de qualidade de atendimento ao consumidor, exigidos às outras grandes distribuidoras de energia do Brasil.

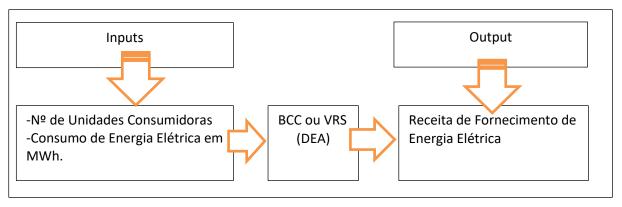
Nesta perspectiva as CEs, atuando como permissionárias passam a desenvolver suas atividades como uma pequena concessionária, na exploração de um serviço público de distribuição e comercialização de energia.

3. Metodologia

A pesquisa possui abordagem metodológica quantitativa. De acordo como Prodanov e Freitas, (2013, p.69) a pesquisa quantitativa considera que tudo poder ser quantificável o que significa traduzir em números opiniões e informações para classifica-las e analisa-las. Requer o uso de recursos e técnicas estatísticas (...).

Quanto aos objetivos a pesquisa se classifica como descritiva. Silva & Menezes (2000, p.21), explicam que "a pesquisa descritiva visa descrever as características de determinada população ou fenômeno ou o estabelecimento de relações entre variáveis. Envolve o uso de técnicas padronizadas de coleta de dados: questionário e observação sistemática. Assume, em geral, a forma de levantamento".

Quanto aos meios de investigação a pesquisa envolve o uso de bibliografias, pesquisa documental e levantamento. Os dados foram coletados, junto as Federações das Cooperativas de Eletrificação dos Estados de Santa Catarina e Rio Grande do Sul e por meio do site da ANEEL.


Foram coletados dados sobre o número de unidades consumidoras, consumo de kWa e volume de receitas obtidas de cada CEs e demais distribuidoras de energia em relação aos anos de 2015 até 2018.

São objeto de estudo as 47 (quarenta e sete) distribuidoras de energia que atuam na região sul sendo destas 31 (trinta e uma) CEs.

Após a coleta os dados foram organizados em planilhas e por meio do uso do SPSS (Inc. *Statistical Analysis Using SPSS*. Chicago. 2001), foi verificado o grau de correlação entre as variáveis, e após, os dados foram inseridos no programa SIAD.v.3.0 - Sistema Integrado de Apoio à Decisão, para o cálculo dos níveis de eficiência. Foram apurados os níveis de eficiência padrão, invertida, composta e normalizada o que possibilitou identificar o *ranking* de eficiência.

As variáveis de *inputs* utilizadas foram: número de unidades consumidoras, consumo de kWa. A variável de *output* utilizada foi o volume de receita bruta sem os valor dos tributos obtida de cada CEs., e demais permissionárias relativas aos anos de 2012 à 2016.

A figura 8 apresenta o modelo BBC utilizado no estudo, orientado para Output.

A tabela 1 apresenta o banco de dados com as DMUs (permissionárias) e as variáveis de *inputs* e *outputs* dos anos de 2015, 2016, 2017 e 2018.

A tabela 1 apresenta o banco de dados com as DMUs e as variáveis de inputs e output dos anos de 2015, 2016, 2017 e 2018.

	*		2015		1	2016			2017			2018	
		In	puts	Outputs	Outputs Ir		Inputs Outputs		nputs	Outputs	Inputs		Outputs
	Danie (Distribute and Energia)			Receita de	Consumo de	Número de	Receita de	Consumo de	•	Receita de	Consumo de		Receita de
	DMUs (Distribuidoras de Energia)	Consumo de	Número de Unidades	Fornecimento de	Energia	Unidades	Fornecimento de	Energia	Número de	Fornecimento de	Energia	Número de	Fornecimento de
		Energia Elétrica em MWh	Consumidoras	Energia Elétrica	Elétrica em	Consumidoras	Energia Elétrica	Elétrica em	Unidades Consumidoras	Energia Elétrica	Elétrica em	Unidades Consumidoras	Energia Elétrica (em
		emiwwn	Consumuoras	(em mil)	MWh	Consumuoras	(em mil)	MWh	Consumidoras	(em mil)	MWh	Consumuoras	mil)
1	CASTRO - DIS - COOP. DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA DE CASTRO										6.453	1.232	1.957.443
2	CEEE-D - CIA ESTADUAL DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA										6.788.621	20.514.753	3.337.642.766
3	CEJAMA - COOPERATIVA DE ELETRICIDADE JACINTO MACHADO	31.402	58.630	9.747.554	30.472	59.314	11.626.920	32.293	60.419	11.940.468	31.969	61.015	13.235.235
4	CELESC-DIS - CELESC DISTRIBUIÇÃO S.A										14.214.329	35.308.251	6.582.467.148
5	CEPRAG - COOPERATIVA DE ELETRICIDADE PRAIA GRANDE	39.440	165.271	16.097.128	41.322	172.041	20.024.212	43.553	180.474		46.184	186.955	23.687.112
6	CERAÇÁ - COOPERATIVA DISTRIBUIDORA DE ENERGIA VALE DO ARAÇÁ	71.521	125.400	16.405.179	73.741	128.542	20.877.157	78.858	131.280	23.832.186	80.334	133.769	27.833.006
7	CERAL - COOPERATIVA DE ENERGIA ELETRICA ANITAPOLIS - CERAL	8.676	36.173	2.807.149	9.014	37.016	3.558.939	9.426	37.634	4.080.185	9.873	39.181	4.652.604
8	CERAL DIS - COOPERATIVA DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA DE ARAPOTI	22.418	11.245	4.731.298	23.450	11.470		25.470	11.696	7.507.395	25.792	11.907	8.991.029
9	CERBRANORTE - COOPERATIVA DE ELETRIFICAÇÃO DE BRAÇO DO NORTE	115.751	187.728	37.759.703	115.494	191.263	40.961.465	122.058	194.916	43.934.095	128.121	198.760	52.225.941
10	CEREJ - COOP. DE PRESTAÇÃO DE SER. PÚBLICOS DE D. DE E. E. SEM. ESTEVES JÚNIOR	37.336	143.616	11.550.332	38.162	148.347	14.274.248	39.785	152.233	15.065.972	42.077	157.051	17.585.338
11	CERFOX - COOPERATIVA DE DISTRIBUIÇÃO DE ENERGIA FONTOURA XAVIER										10.141	31.181	4.553.128
12	CERGAL - COOPERATIVA DE ELETRIFICAÇÃO ANITA GARIBALDI LTDA	62.810	197.715	21.766.975	63.604	202.884	25.524.618	64.462	207.971	26.809.563	67.554	212.730	33.312.614
13	CERGAPA - COOPERATIVA DE ELETRICIDADE GRÃO PARÁ	24.988	42.344	7.272.037	26.231	43.447	8.791.751	28.922	44.480		30.407	45.080	11.731.372
14	CERGRAL - COOPERATIVA DE ELETRICIDADE DE GRAVATAL	22.801	66.296	7.600.283	23.673	67.561	8.988.859	24.680	69.979	9.787.124	25.782	72.088	11.144.950
15	CERILUZ - COOP. REGIONAL DE ENERGIA E DESENVOLVIMENTO IJUÍ LTDA	114.945	161.071	28.663.081	120.747	163.111	33.755.575	120.966	164.505	38.138.010	126.749	165.652	44.983.183
16	CERMISSÕES - COOP. DE DISTRIBUIÇÃO E GERAÇÃO DE ENERGIA DAS MISSÕES	97.405	304.529	34.924.240	106.784	309.177	41.601.035	111.536	313.323	45.897.162	116.163	316.666	53.111.628
17	CERMOFUL - COOPERATIVA FUMACENSE DE ELETRICIDADE	113.030	153.238	31.933.437	107.242	158.810	35.292.916	109.799	162.763	37.302.543	109.425	166.215	43.177.740
18	CERPALO - COOPERATIVA DE ELETRICIDADE DE PAULO LOPES	42.199	132.034	13.581.877	45.034	138.951	18.000.080	49.022	147.134	21.955.035	50.538	156.213	25.054.411
19	CERSUL - COOPERATIVA DE DISTRIBUIÇÃO DE ENERGIA	144.125	200.562	30.237.947	142.434	204.743	37.189.970	140.254	204.896	37.837.889	132.684	202.528	40.223.238
20	CERTAJA - COOPERATIVA REGIONAL DE ENERGIA TAQUARI JACUÍ	96.392	278.486	29.486.537	98.931	282.931	33.339.411	104.357	287.416		104.462	289.456	51.185.456
21	CERTEL - COOPERATIVA DE DISTRIBUIÇÃO DE ENERGIA TEUTÔNIA	361.345	705.858	100.145.285	374.633	726.659	122.170.618	380.909	747.010	128.062.708	400.203	769.387	146.989.747
22	CERTHIL - COOPERATIVA DE DISTRIBUIÇÃO DE ENERGIA ENTRE RIOS LTDA										10.242	16.168	4.558.605
23	CERTREL - COOPERATIVA DE ENERGIA TREVISO	41.892	45.977	11.592.708	41.518	47.126	13.983.394	41.123	48.832	14.740.301	41.239	49.608	17.276.235
24	CFLO - COMPANHIA FORÇA E LUZ DO OESTE										216.132	716.597	96.518.142
25	COCEL - COMPANHIA CAMPOLARGUENSE DE ENERGIA	269.468	265.425	52.855.278	251.842	585.378	114.095.366	196.142	591.143		192.852	600.166	98.763.868
26	COOPERA - COOPERATIVA PIONEIRA DE ELETRIFICAÇÃO	179.836	422.856	77.645.811	274.385	272.673	62.721.335	281.712	280.509		294.608	286.618	82.420.612
27	COOPERALIANÇA - COOPERATIVA ALIANÇA	68.177	119.653	19.121.511	147.909	431.494	70.150.410	153.626	441.724	63.886.878	167.573	450.606	59.515.582
28	COOPERCOCAL - COOPERATIVA ENERGÉTICA COCAL	53.828	176.013	16.948.219	72.318	121.555	22.424.316	78.203	124.872		81.551	126.895	28.334.274
29	COOPERLUZ - COOP. DISTRIBUIDORA DE ENERGIA FRONTEIRA NOROESTE	12.306	13.400	3.346.562	55.234	180.309	19.165.065	58.108	183.495	21.231.238	60.386	186.798	23.659.347
30	COOPERMILA - COOPERATIVA DE ELETRIFICAÇÃO LAURO MULLER	41.897	90.489	11.386.777	13.159	13.804	4.168.517	13.302	14.037	4.246.857	15.461	14.353	5.886.457
31	COOPERZEM - COOPERATIVA DE ELETRIFICAÇÃO RURAL DE ARMAZÉM							17.319	37.912	8.576.327	43.837	92.362	21.979.185
32	COORSEL - COOPERATIVA REGIONAL SUL DE ELETRIFICAÇÃO RURAL	373.743	605.891	105.520.242	44.055	92.168	14.817.710	47.081	94.330	18.022.394	49.817	96.524	21.620.035
33	COPEL-DIS - COPEL DISTRIBUIÇÃO S.A.										19.561.630	55.233.441	8.781.235.038
34	COPREL - COPREL COOPERATIVA DE ENERGIA	83.654	261.105	27.323.099	378.089	618.777		394.789	630.377		409.026	642.886	154.686.945
35	CRELUZ-D - COOPERATIVA DE DISTRIBUIÇÃO DE ENERGIA CRELUZ-D	52.835	85.587	16.214.150	87.071	266.316		91.882	270.708	34.527.677	95.962	274.577	40.834.425
36	CRERAL - COOP. REGIONAL DE ELETRIFICAÇÃO RURAL DO ALTO URUGUAI				53.803	86.948	18.534.694	56.162	88.053	19.744.760	55.750	89.021	21.280.019
37	DEMEI - DEPARTAMENTO MUNICIPAL DE ENERGIA DE IJUÍ										134.464	394.243	68.225.632
38	EFLIC - EMPRESA FORÇA E LUZ JOÃO CESA LTDA										13.222	43.912	8.038.112
39	HIDROPAN - DISTRIBUIDORA DE ENERGIA S/A										90.299	221.049	44.694.031
40	EFLUL - EMPRESA FORÇA E LUZ DE URUSSANGA LTDA			1				1			33.655	81.147	18.925.604
41	FORCEL - FORÇA E LUZ CORONEL DE VIVIDA LTDA										40.892	92.350	16.777.376
42	ELETROCAR - CENTRAIS ELÉTRICAS DE CARAZINHO SA			1				1			167.910	447.266	83.171.091
43	IENERGIA - IGUAÇU DISTRIBUIDORA DE ENERGIA ELÉTRICA LTDA.			1				1			184.927	425.689	81.999.401
44	MUXENERGIA - MUXFELDT MARIN E CIA LTDA			1				1			60.849	137.270	25.933.605
45	RGE - RIO GRANDE ENERGIA SA			1				1			6.714.454	17.907.496	3.009.697.689
46	RGE SUL - RGE SUL DISTRIBUIDORA DE ENERGIA S.A.			1				1			6.306.284	16.133.403	2.940.075.298
47	UHENPAL - NOVA PALMA ENERGIA LTDA	:1		D '4	l		:~. E		C11		68.193	190.801	31.075.437

Fonte: Adpatado de Aneel. Relatório dos Consumidores, Consumo, Receita e Tarifa Média – Região, Empresa e Classe de Consumo. Disponível em: http://www.aneel.gov.br/relatorios-tecnicos

4. Apresentação e análise dos resultados

Na sequência apresentam-se os resultados do estudo pelas seguintes seções. Inicia com correlação na base de dados, na segunda seção apresenta o *Score* de eficiência nos anos de 2015 até 2018, após a terceira seção apresenta o *Ranking* de eficiência normalizada das distribuidoras de energia que atuam na região sul do Brasil e por fim descreve o *Ranking* da eficiência composta normalizada das CEs do sul do Brasil.

4.1 Correlação na base de dados

A tabela 2 apresenta o grau de correlação entre as variáveis de consumo e número de unidades consumidoras (inputs) e a variável receita de fornecimento de energia (output).

Tabela 2 – Correlação das variáveis

Variáveis	2015				2016			2017		2018		
	Consumo	Nº Unid.	Receitas									
Consumo	1,00000	0,90694	0,95638	1,00000	0,90683	0,96826	1,00000	0,88936	0,95972	1,00000	0,99778	0,99727
Nº Unid.	0,90694	1,00000	0,95638	0,90683	1,00000	0,96826	0,88936	1,00000	0,95972	0,99778	1,00000	0,99727
Receitas	0,95638	0,95638	1,00000	0,96826	0,96826	1,00000	0,95972	0,95972	1,00000	0,99727	0,99727	1,00000

A partir do banco de dados apresentado na tabela 1, foi possível confirmar as variáveis como significativas para o modelo. Por meio do cálculo da correlação de *Pearson* ficou constatado forte correlação positiva entre todas as variáveis, que variam de 0,96826 a 0,99727, com significância estatística de 0,05 ou 5%.

4.2 Score de eficiência nos anos de 2015 até 2018.

Com o uso do SIAD.v.3.0, foram apurados os valores do *scores* de eficiência das DMUs e das variáveis, consumo de energia elétrica em MWh, número de unidades consumidoras e receita de fornecimento de energia elétrica.

A tabela 3 apresenta os *scores* de eficiência das fronteiras padrão, invertida, composta e normalizada, dos anos de 2015, 2016, 2017 e 2018 das DMUs, objeto de análise.

Tabela 3 – Scores de eficiência nos anos de 2015, 2016, 2017 e 2018.

•	2015 2016								2017		2018					
DMUs	Padrão	Invertida		Normalizada	Padrão			Normalizada	Padrão	Invertido		Normalizada	Padrão	Invertido	Composta	Normalizada
CASTRO							•						1,000000	1,000000	0,500000	0,691853
CEEE-D	1,000000	1,000000	0,500000	0,659353	1,000000	0,962829	0,518585	0,744136	1,000000	1,000000	0,500000	0,732244	1,000000	1,000000	0,500000	0,691853
CEJAMA	0,712809	0,738541	0,487134	0,642387	0,860826	0,728558	0,566134	0,812366	0,811219	0,803921	0,503649	0,737588	0,774149	0,745931	0,514109	0,711375
CELESC- DIS	0,927875	1,000000	0,463937	0,611797	1,000000	1,000000	0,500000	0,717468	1,000000	0,957407	0,521296	0,763432	1,000000	1,000000	0,500000	0,691853
CEPRAG	0,874302	0,929505	0,472398	0,622954	0,970108	0,910574	0,529767	0,760182	0,984631	0,939085	0,522773	0,765595	0,804230	0,937239	0,433496	0,599830
CERAÇA	0,516171	0,978839	0,268666	0,354291	0,680777	0,941827	0,369475	0,530173	0,762193	0,929741	0,416226	0,649558	0,759908	0,857095	0,451407	0,624614
CERAL	1,000000	1,000000	0,500000	0,659353	1,000000	1,000000	0,500000	0,717468	1,000000	1,000000	0,500000	0,732244	0,832122	1,000000	0,416061	0,575706
CERAL - DIS	1,000000	1,000000	0,500000	0,659353	1,000000	1,000000	0,500000	0,717468	1,000000	0,957542	0,521229	0,763333	1,000000	0,831001	0,584499	0,808775
CERBRANORTE	0,740943	0,710506	0,515218	0,679421	0,974470	0,749801	0,612334	0,878660	1,000000	0,779266	0,610367	0,893875	1,000000	0,734117	0,632942	0,875805
CEREJ	0,655871	1,000000	0,327935	0,432450	0,746790	1,000000	0,373395	0,535798	0,784896	1,000000	0,392448	0,574735	0,699766	1,000000	0,319883	0,442624
CERFOX													0,890453	0,779305	0,555574	0,768750
CERGAL	0,747420	0,896914	0,425253	0,560784	0,804523	0,890760	0,456882	0,655596	0,891683	0,885123	0,503280	0,737047	0,790963	0,796586	0,497188	0,687962
CERGAPA	0,735420	0,776672	0,479374	0,632153	0,824396	0,799231	0,512583	0,735523	0,846485	0,813004	0,516741	0,756760	0,809151	0,757650	0,525750	0,727484
CERGRAL	0,705250	0,814485	0,445382	0,587328	0,755558	0,853825	0,450867	0,646965	0,790283	0,865623	0,462330	0,677077	0,690169	0,811740	0,429214	0,607743
CERILUZ	0,581397	0,842966	0,369215	0,486886	0,892890	0,882265	0,505312	0,725091	0,972064	0,842356	0,564854	0,827221	0,949453	0,834241	0,557606	0,771562
CERMISSÕES	0,778874	0,978012	0,400431	0,528050	0,800103	0,916497	0,441803	0,633958	0,900305	0,864910	0,517698	0,758162	0,475000	0,802999	0,473501	0,655185
CERMOFUL	0,661792	0,740339	0,460727	0,607563	0,977982	0,770040	0,603971	0,866659	0,980855	0,797242	0,591812	0,866701	0,974832	0,744440	0,615194	0,851247
CERPALO	0,686118	0,874137	0,405990	0,535382	0,799557	0,839279	0,480139	0,688969	0,951933	0,777434	0,587249	0,860019	0,809843	0,740349	0,534747	0,739932
CERSUL	0,489569	1,000000	0,244785	0,322799	0,801238	0,962629	0,419304	0,601675	0,788637	1,000000	0,394319	0,577475	0,730399	0,981105	0,374647	0,518401
CERTAJA	0,663058	1,000000	0,331529	0,437189	0,682204	1,000000	0,341102	0,489460	0,891854	0,860296	0,515779	0,755352	0,821353	0,737795	0,541779	0,749662
CERTEL	0,635623	1,000000	0,317812	0,419100	0,837646	0,973943	0,431852	0,619679	0,894166	0,934212	0,479977	0,702921	0,845218	1,000000	0,422609	0,584766
CERTHIL													0,904362	0,731360	0,586501	0,811544
CERTREL	0,733065	0,746844	0,493111	0,650268	1,000000	0,727250	0,636375	0,913157	1,000000	0,748402	0,625799	0,916475	1,000000	0,668681	0,665659	0,921076
CFLO	0,943886	0,819930	0,566195	0,741042	0,974748	0,826310	0,574219	0,823967	0,925145	0,934851	0,495147	0,725137	0,848658	1,000000	0,424329	0,587146
COCEL	0,967139	0,708228	0,629455	0,830066	1,000000	0,765900	0,617050	0,885427	1,000000	0,834491	0,582754	0,853436	1,000000	0,799255	0,600373	0,830739
COOPERA	0,694301	1,000000	0,347151	0,457789	1,000000	1,000000	0,500000	0,717468	1,000000	1,000000	0,500000	0,732244	1,000000	1,000000	0,500000	0,691853
COOPERALIANÇA	0,961061	0,742149	0,609456	0,803693	1,000000	0,821288	0,589356	0,845688	0,917343	0,878414	0,519464	0,760749	0,606135	1,000000	0,303067	0,419356
COOPERCOCAL	0,630194	0,800686	0,414754	0,546939	0,775136	0,849622	0,462757	0,664026	0,781723	0,920349	0,430687	0,630736	0,789767	0,851026	0,469371	0,649471
COOPERLUZ	0,675351	0,963082	0,356134	0,499636	0,694412	1,000000	0,347206	0,498218	0,774579	0,974560	0,400009	0,585809	0,592750	1,000000	0,296375	0,410096
COOPERMILA	1,000000	0,982269	0,508865	0,671044	1,000000	1,000000	0,500000	0,717468	1,000000	1,000000	0,500000	0,732244	0,964578	0,740186	0,612196	0,847099
COOPERZEM									1,000000	0,641278	0,679361	0,994916	0,918208	0,635544	0,641332	0,887150
COORSEL	0,587855	0,886966	0,350445	0,462133	0,725363	0,846226	0,439568	0,630752	0,816132	0,778071	0,519030	0,760114	0,814570	0,730881	0,541844	0,749753
COPEL - DIS	1,000000	1,000000	0,500000	0,659353	1,000000	1,000000	0,500000	0,717468	1,000000	1,000000	0,500000	0,732244	1,000000	1,000000	0,500000	0,691853
COPREL	0,740026	0,950533	0,394747	0,520555	0,953520	0,916208	0,518656	0,744238	1,000000	0,901900	0,549050	0,804077	0,956739	0,972366	0,492187	0,681041
CRELUZ - D	0,707176	0,995755	0,355711	0,469078	0,733931	0,978243	0,377844	0,542182	0,814300	0,953429	0,430436	0,630369	0,689771	0,866978	0,411396	0,569251
CRERAL	0,700926	0,714031	0,493448	0,650712	0,856656	0,756254	0,550201	0,789503	0,890892	0,791790	0,549551	0,804810	0,744176	0,837238	0,453469	0,627467
DEMEI	0,893797	0,909984	0,491906	0,648680	0,873328	0,890077	0,491625	0,705451	0,944025	0,849817	0,547104	0,801227	0,941937	0,738279	0,601829	0,832754
EFLJC	1,000000	0,537443	0,731279	0,964341	1,000000	0,644845	0,677577	0,972280	1,000000	0,700179	0,649910	0,951786	1,000000	0,562011	0,718995	0,994877
EFLUL	1,000000	0,483361	0,758319	1,000000	1,000000	0,606209	0,696895	1,000000	1,000000	0,634335	0,682833	1,000000	1,000000	0,554605	0,722697	1,000000
ELETROCAR	0,977013	0,767741	0,604636	0,797337	0,938919	0,801365	0,568777	0,816158	0,959127	0,830946	0,564091	0,826104	0,998663	0,701476	0,648594	0,897463
FORCEL	0,895972	0,554944	0,670514	0,884210	1,000000	0,607453	0,696274	0,999108	0,864698	0,757479	0,533610	0,810754	0,829040	0,679775	0,574632	0,795122
HIDROPAN	1,000000	0,576630	0,711685	0,938503	0,972500	0,695231	0,640010	0,918373	0,976521	0,753486	0,611518	0,895560	1,000000	0,599941	0,700030	0,968635
IENERGIA	0,785435	0,776574	0,504430	0,665195	0,934493	0,797486	0,568503	0,815766	0,955311	0,815497	0,569907	0,834622	0,889800	0,781327	0,554237	0,766900
MUXENERGIA	0,960245	0,568413	0,695916	0,917709	0,870864	0,711664	0,5796	0,831689	0,821181	0,804647	0,508267	0,744350	0,858859	0,685418	0,586721	0,811849
RGE	0,979637	1,000000	0,489818	0,645926	0,885858	1,000000	•	0,635574	0,948287	0,978147	0,485070	0,710379	0,930799	0,999536	0,465632	0,644297
RGE - SUL	1,000000	0,888820	0,555590	0,732659	1,000000	0,899601	0,5502	0,789501	1,000000	0,901702	0,549149	0,804222	1,000000	0,917786	0,541107	0,748733
UHENPAL	0,978168	0,677008	0,650580	0,857924	1,000000	0,684549		0,943793	0,995708	0,753227	0,621241	0,909800	0,810134	0,726480	0,541827	0,749730
Eficientes	9	11	1	1	15	10	1	1	15	7	1	1	13	11	1	1
Ineficientes	34	32	42	42	28	33	42	42	29	37	43	43	34	36	46	46

No ano de 2015 os resultados indicam que na fronteira padrão 9 (nove) distribuidoras de energia da região sul do Brasil, foram as mais eficientes na geração de receitas são: CEEE-D, CERAI, CERAI-DIS, COOPERMILA, COPEL – DIS, EFLJC, EFLUL, HIDROPAN e RGE SUL.

No ano de 2016, as distribuidoras de energia CEEE-D, CELESC-DIS, CERAL, CERAL-DIS, CERTREL, COCEL, COOPERA COOPERALIANÇA, COOPERMILA, COPEL-DIS, EFLJC, EFLUL, FORCEL, RGE-SUL e UHENPAL, foram as mais eficientes, na fronteira padrão.

No ano de 2017 as distribuidoras, CEEE-D, CELESC-DIS, CERAL, CERAL-DIS, CERBRANORTE, CERTREL, COCEL, COOPERA, COOPERMILA, COOPERZEM, COOPEL-DIS, COPREL, EFLJC, EFLUL e RGE-SUL, foram as mais eficientes na fronteira padrão e no ano de 2018 as distribuidoras de energia, CASTRO, CEEE-D, CELESC — DIS, CERAL-DIS, CERBANORTE, CERTREL, COCEL, COOPERA, COPEL-DIS, EFLJC, EFLUL, HIDROPAN e REGE-SUL, foram as mais eficientes na fronteira padrão.

Para a construção de um *ranking*, se faz necessário desempatar as empresas que obtiveram 100% de eficiência na fronteira padrão. A partir do *ranking* da fronteira invertida foi possível identificar as empresas distribuidoras (DMUs), que obtiveram 100% de eficiência na fronteira padrão e que teoricamente passariam a condição de ineficientes na fronteira invertida e vice-versa.

Como forma de desempatar as distribuidoras consideradas 100% eficientes na fronteira padrão, a ferramenta DEA, atribui um *score* específico para as DMUs, que estão nas áreas de ineficiência. Isso decorre de que algumas DMUs são consideradas eficientes na fronteira padrão e também na fronteira invertida o que leva a 'falsas eficiências' na fronteira invertida com 100%.

Os resultados demonstram falsa eficiência com DMUs de 100% na eficiência padrão e também na eficiência invertida no ano de 2015 nas distribuidoras; CEEE-D, CERAL, CERAL-DIS e COPEL-DIS, no ano de 2016 com as distribuidoras, CELESC-DIS, CERAL, CERAL-DIS, COOPERA, COOPERMILA e COPEL-DIS, no ano de 2017 com as distribuidoras CEEE-DIS, CERAL, COOPERA, COOPERMILA, COPEL-DIS e no ano de 2018 com as distribuidoras, CASTRO, CEEE-D, CELESC-DIS, COOPERA e COOPEL –DIS.

A partir da identificação da eficiência padrão e invertida foram determinados os índices de eficiência composta normalizada conforme fórmulas descritas na revisão teórica e identificado o *ranking* de eficiência de todas as distribuidoras.

4.3 *Ranking* de eficiência normalizada das distribuidoras de energia que atuam na região sul do Brasil.

A tabela 4 apresenta o nome da distribuidora de energia, a posição, e o ranqueamento de eficiência das DMUs de acordo com a fronteira composta normalizada em relação aos anos de 2015, 2016, 2017 e 2018.

		2015		2016		2017	2018		
DISTRIBUIDORA DE ENERGIA	Posição	Composta (*)							
EFLUL	1º	1,000000	1º	1,000000	1º	1,000000	1º	1,000000	
EFLJC	2º	0,964341	3º	0,972280	3º	0,951786	2º	0,994877	
HIDROPAN	3º	0,938503	5º	0,918373	6º	0,895560	3º	0,968635	
MUXENERGIA	4º	0,917709	11º	0,831689	27º	0,744350	12º	0,811849	
FORCEL	5º	0,884210	2º	0,999108	149	0,810754	15⁰	0,795122	
UHENPAL	6º	0,884210	4º	0,943793	5º	0,909800	20⁰	0,749730	
COCEL	7º	0,830066	7º	0,885427	10⁰	0,853436	119	0,830739	
COOPERALIANÇA	8º	0,803693	10⁰	0,845688	229	0,760749	46⁰	0,419356	
ELETROCAR	9º	0,797337	13⁰	0,816158	139	0,826104	5º	0,897463	
CFLO	10⁰	0,741042	129	0,823967	35º	0,725137	40º	0,587146	
RGE SUL	119	0,732659	17º	0,789501	16⁰	0,804222	22⁰	0,748733	
CERBRANORTE	129	0,679421	8º	0,878660	7º	0,893875	7º	0,875805	
COOPERMILA	139	0,671044	27º	0,717468	33⁰	0,732244	9º	0,847099	
IENERGIA	149	0,665195	14º	0,815766	119	0,834622	18⁰	0,766900	
CEEE-D	15⁰	0,659353	20º	0,744136	30º	0,732244	27º	0,691853	
CERAL	16⁰	0,659353	24º	0,717468	31º	0,732244	429	0,575706	
CERAL DIS	179	0,659353	25º	0,717468	219	0,763333	149	0,808775	
COPEL-DIS	189	0,659353	28º	0,717468	34º	0,732244	30º	0,691853	
CRERAL	19⁰	0,650712	16º	0,789503	15⁰	0,804810	36⁰	0,627467	
CERTREL	20⁰	0,650268	6º	0,913157	4º	0,916475	49	0,921076	
DEMEI	219	0,648680	29º	0,705451	18⁰	0,801227	10⁰	0,832754	
RGE	22º	0,645926	34º	0,635574	36⁰	0,710379	37º	0,644297	
CEJAMA	23⁰	0,642387	15º	0,812366	28⁰	0,737588	25º	0,711375	
CERGAPA	24º	0,632153	219	0,735523	25º	0,756760	24º	0,727484	
CEPRAG	25º	0,622954	18⁰	0,760182	19⁰	0,765595	39º	0,599830	
CELESC-DIS	26⁰	0,611797	23º	0,717468	20⁰	0,763432	28⁰	0,691853	
CERMOFUL	27º	0,607563	9º	0,866659	8º	0,866701	80	0,851247	
CERGRAL	28⁰	0,587328	33º	0,646965	38⁰	0,677077	38⁰	0,607743	
CERGAL	29⁰	0,560784	32⁰	0,655596	29º	0,737047	31º	0,687962	
COOPERCOCAL	30⁰	0,546939	31⁰	0,664026	40⁰	0,630736	34º	0,649471	
CERPALO	31º	0,535382	30º	0,688969	9º	0,860019	23º	0,739932	
CERMISSÕES	32º	0,528050	35º	0,633958	24º	0,758162	33⁰	0,655185	
COPREL	33⁰	0,520555	19º	0,744238	17º	0,804077	32⁰	0,681041	
COOPERLUZ	34º	0,499636	42º	0,498218	429	0,585809	47º	0,410096	
CERILUZ	35⁰	0,486886	22⁰	0,725091	129	0,827221	16⁰	0,771562	
CRELUZ-D	36⁰	0,469078	39º	0,542182	419	0,630369	43º	0,569251	
COORSEL	37º	0,462133	36⁰	0,630752	23⁰	0,760114	19⁰	0,749753	
COOPERA	38⁰	0,457789	26º	0,717468	32º	0,732244	29º	0,691853	
CERTAJA	39⁰	0,437189	43º	0,489460	26⁰	0,755352	219	0,749662	
CEREJ	40⁰	0,432450	40⁰	0,535798	449	0,574735	45º	0,442624	
CERTEL	419	0,419100	37º	0,619679	37º	0,702921	419	0,584766	
CERAÇÁ	429	0,354291	419	0,530173	39⁰	0,649558	37⁰	0,624614	
CERSUL	43º	0,322799	38⁰	0,601675	43º	0,577475	449	0,518401	
CASTRO	449						26⁰	0,691853	
CERFOX	45º						179	0,768750	
CERTHIL	46⁰						13º	0,811544	
COOPERZEM	47º				2º	0,994916	6º	0,887150	

(*) Eficiência normalizada composta

Os resultados do estudo demonstram que a distribuidora EFLUL— Empresa Força e Luz de Urussanga Ltda., foi a mais eficiente na geração de receitas com energia em todos os anos analisados. A EFLJC - Empresa Força e Luz João Cesa Ltda, ocupou a segunda posição nos anos de 2015 e 2018 e terceira posição nos anos de 2016 e 2017.

Verificou-se que no ano de 2016 as maiores variações positivas no grau de eficiência ocorreram nas distribuidoras, FORCEL, CERBRANORTE, CERTREL, CERMOFUL, COPREL e CERILUZ. Já as maiores variações negativas no ano de 2016 ocorreram com as distribuidoras, MUXENERGIA, COOPERMILA e RGE.

No ano de 2017 em relação ao ano de 2015, as maiores variações positivas no grau de eficiência ocorreram nas distribuidoras, COOPERZEM, CERILUZ, COPREL, CERPALO, CERMOFUL, CERTREL e CERBRANORTE. As maiores variações negativas de 2017 em relação ao ano de 2015 foram, MUXENEGIA, FORCEL, COOPERALIANÇA, CFLO, COOPERMILA, CEEE-D, CERAL, COPEL – DIS e RGE.

No ano de 2018, em relação ao ano de 2015, as maiores variações positivas no grau de eficiência ocorreram nas permissionárias ELETROCAR, CERBRANORTE, COOPERMILA, CERTREL, CERMOFUL, CERTAJA, CERILUZ, DEMEI E COOPERZEM. Já as maiores variações negativas ocorreram com as permissionárias MUXENERGIA, FORCEL, UHENPAL, COCEL, COOPERALIANÇA, CFLO, CEED, CERAL, CRERAL, RGE, e CEPRAG.

A redução de eficiência pode ser justificada pela redução nos valores das variáveis de *outputs*, conforme descrito na tabela 1. Como exemplo apresenta-se as distribuidora COOPERALIANÇA, que apresentava a 8º posição de eficiência, caindo para 46º posição no ano de 2018. Cita-se também a CFLO que no ano de 2015 era 10º posição em eficiência, passando para a 40º posição.

No geral, denota-se aumento dos níveis de eficiência do número de Cooperativas de eletrificação nos anos de 2016, 2017 e 2018 em relação ao ano de 2015 em relação às demais distribuidoras. Constata-se que entre as diversas Cooperativas de Eletrificação a CERBRANORTE, CERTREL, CERMOFUL, CERPALO, CERILUZ e a CERTAJA, foram as que apresentaram acréscimo nos níveis de eficiência de 2015 para 2018.

4.4 Ranking da eficiência composta normalizada das CEs do sul do Brasil.

A tabela 5 apresenta o nome da cooperativa de eletrificação do sul do Brasil, o ano e o *ranking* de eficiência composta normalizada nos anos de 2015, 2016, 2017 e 2018.

COOPERATIVA DISTRIBUIDORA		2015		2016		2017	2018		
COOPERATIVA DISTRIBUIDORA	Posição	Composta (*)							
CERBRANORTE	1º	1,000000	2º	0,993266	3º	0,931483	4º	0,942024	
COOPERALIANÇA	2º	0,989900	7º	0,878042	22º	0,704484	30º	0,615908	
CERMOFUL	3º	0,949922	3º	0,970262	5º	0,893374	8º	0,900892	
CERTREL	49	0,935154	1º	1,000000	2º	0,933097	2º	0,971562	
CEPRAG	5º	0,824621	6º	0,892997	12º	0,774244	149	0,809738	
CEJAMA	6º	0,824347	49	0,967776	9º	0,802098	16⁰	0,797186	
CERGAPA	7º	0,782169	8º	0,841296	10⁰	0,790453	15º	0,798569	
CERGRAL	8º	0,781913	9º	0,821447	21º	0,717795	24º	0,748997	
CERILUZ	9º	0,766959	119	0,818432	8º	0,853592	13⁰	0,863365	
COOPERMILA	10⁰	0,761026	16⁰	0,797654	18⁰	0,755430	9º	0,895556	
CERAL	119	0,754018	12º	0,797654	15º	0,755430	219	0,751655	
CERAL DIS	12º	0,754018	13º	0,797654	119	0,783294	10⁰	0,888227	
COOPERA	13º	0,754018	15º	0,797654	17º	0,755430	22º	0,751655	
COPREL	149	0,754018	179	0,797654	19⁰	0,755430	23º	0,751655	
COOPERCOCAL	15º	0,740423	19⁰	0,760259	23º	0,678497	26º	0,710278	
CERTEL	16⁰	0,727905	149	0,797654	16⁰	0,755430	25º	0,728370	
CERGAL	17º	0,716182	18º	0,785851	20º	0,753149	6º	0,910528	
CERPALO	18⁰	0,683752	10⁰	0,820926	49	0,906494	7º	0,909988	
CERMISSÕES	19⁰	0,657404	21º	0,718470	149	0,756689	119	0,886129	
CRERAL	20º	0,607563	5º	0,910267	7º	0,860091	17º	0,792887	
COORSEL	21º	0,601380	20⁰	0,757874	6º	0,862311	12º	0,868169	
COOPERLUZ	22⁰	0,601252	26º	0,588198	28º	0,603502	31⁰	0,608420	
CRELUZ-D	23º	0,582945	23º	0,637863	25º	0,620407	19º	0,755241	
CEREJ	24º	0,567788	24º	0,626373	26º	0,609946	29º	0,615929	
CERSUL	25º	0,565854	22º	0,687979	27º	0,608883	32⁰	0,567345	
CERTAJA	26º	0,540163	27º	0,574418	13⁰	0,772733	3º	0,949187	
CERAÇÁ	27º	0,500155	25º	0,617507	24º	0,663539	27º	0,680061	
CASTRO - DIS							20º	0,751655	
CERFOX							189	0,772861	
CERTHIL							5º	0,920371	
COOPERZEM					1º	1,000000	1º	1,000000	

(*) Eficiência normalizada composta

No ano de 2015 a cooperativa de eletrificação CERBRANORTE, foi a mais eficiente na geração de receita, no ano de 2016 a CERTREL foi a mais eficiente e nos anos de 2017 e 2018 a COOPERZEM, foi a mais eficiente na geração de receitas.

No ano de 2016 das 27 (vinte e sete) cooperativas de eletrificação 17 caíram de posição, 8 CEs subiram de posição e 2 CES, se mantiveram nos índices de eficiência em relação ao ano de 2015.

No ano de 2017 das 27 (vinte e sete) CEs, 17 caíram de posição, 1 (uma) manteve e 9 subiram de posição nos índices de eficiência em relação ao ano de 2015. No ano de 2018 das 27 (vinte e sete) CEs, 16 caíram de posição, 1(uma) manteve e 17 subiram de posição nos índices de eficiência em relação ao ano de 2015.

Verificou-se que no ano de 2016 as maiores variações positivas no grau de eficiência ocorreram nas cooperativas CERTREL, CERPALO e CRERAL. Já as maiores variações negativas no ano de 2016 ocorreram na cooperativa COOPERALIANÇA que passou da segunda posição para a sétima posição e a na cooperativa COOPERMILA que passou da décima para a décima sexta posição.

No ano de 2017 em relação ao ano de 2015, as maiores variações positivas no grau de eficiência ocorreram nas cooperativas CERTREL, CERPALO, CRERAL, COORSEL e CERTAJA. As maiores variações negativas de 2017 em relação ao ano de 2015 foram às cooperativas, COOPERALIANÇA, CEPRAG, CERGRAL e COOPERMILA.

No ano de 2018, em relação ao ano de 2015, as maiores variações positivas no grau de eficiência ocorreram nas cooperativas, CERTREL, COOPERMILA, CERGAL, CERPALO, CERTAJA, CERTHIL e COOPERZEM. Já as maiores variações negativas ocorreram com as cooperativas COOPERALIANÇA, CERMOFUL, CEPRAG, CEJAMA, CERGAPA, CERGRAL e CERAL.

A redução de eficiência pode ser justificada pela redução nos valores das variáveis de *outputs*, conforme descrito na tabela 1. A distribuidora COOPERALINAÇA, que apresentava a 2º posição de eficiência no ano de 2015, caindo para 30º posição no ano de 2018.

Os maiores níveis de eficiência são obtidos pela melhor combinação no consumo de energia elétrica em MWh do número de unidades consumidoras em relação receita obtida pelo fornecimento de energia elétrica.

5. Conclusões

O estudo teve por objetivo verificar os níveis de eficiência das CEs e nas demais distribuidoras de energia que atuam na região sul do Brasil. Foram coletados dados sobre o número de unidades consumidoras, consumo de kWa e volume de receitas obtidas de cada CEs, das cooperativas e demais distribuidoras de energia em relação aos anos de 2015 até 2018, junto a *site* da Aneel e nas Federações das Cooperativas de Eletrificação dos Estados de Santa Catarina e Rio Grande do Sul

A partir dos dados coletados foi possível identificar os níveis de eficiência padrão, invertida, composta e normalizada e após o ranqueamento das distribuidoras por nível de eficiência, por meio da análise envoltória de dados — DEA.

Os resultados do estudo demonstram que nas distribuidoras de energia que atuam no sul do Brasil, não houve variação na primeira posição do *ranking* nos quatro anos analisados. A distribuidora mais eficiente em produzir receita nos anos de 2015, 2016, 2017 e 2018 foi a Empresa Força e Luz e Urussanga Ltda – EFLUL.

Já na segunda posição do ranking no ano de 2015 foi a Empresa Força e Luz João Cesa Ltda, passando para a terceira posição em 2016 e 2017, e retornando para a segunda posição no ano de 2018.

No ano de 2016 a segunda posição ficou coma FORCEL – Força e Luz de Coronel de Vivida Ltda, e no ano de 2017 com a Cooperativa de Eletrificação Rural de Armazém – COOPERZEM.

Na análise das realizada com as CEs., os resultados indicam que no ano de 2015 a Cooperativa e Eletrificação de Braço do Norte CERBRANORTE, foi a mais eficiente, no ano de 2016, a mais eficiente foi a cooperativa de energia Treviso-CERTREL e nos anos de 2017 e 2018 a Cooperativa de Eletrificação Rural de Armazém - COOPERZEM.

A segunda posição no ano de 2015 ficou com a Cooperativa Aliança – COOPERALIANÇA, no ano de 2016 com a Cooperativa de eletrificação de Braço do Norte–CERBRANORTE e nos anos de 2017 e 2018, com a Cooperativa de Energia Treviso–CERTREL.

Destarte que as cooperativas de eletrificação, como permissionárias de um serviço público, mantêm os mesmos níveis de exigência das grandes distribuidoras de energia como a COPEL–DIS, RGE, RGE–SUL, CELESC etc. O estudo considerou o consumo de energia elétrica, o número de unidades consumidoras e as receitas totais no fornecimento de energia elétrica de forma global.

Ocorre que as distribuidoras de energia operam com diferentes tipos de tarifas de fornecimento de energia, em função das diferentes classes de consumo. Isso possibilita modificar os valores das receitas totais das permissionárias distribuidoras de energia em função dos tipos de tarifas de fornecimento.

Como outros estudos sugere-se, analisar a relação de indicadores socioambientais dos municípios, com o consumo de energia e unidades consumidoras de todas as distribuidoras que atuam em cada município, comparativamente as cooperativas de eletrificação.

Bibliografias.

ANEEL - Agência Nacional de Energia Elétrica. Disponível em: http://www.aneel.gov.br/ ANGULO-MEZA, L., BIONDI NETO, L., SOARES de MELLO, J. C. C. B., GOMES, E. G. ISYDS - Integrated System for Decision Support (SIAD - Sistema Integrado de Apoio a Decisão): A Software Package for Data Envelopment Analysis Model. Pesquisa Operacional, Rio de Janeiro, n. 25, p. 493-503, set./dez. 2005. Disponível em: . Acesso em: 15 jun. 2011.

BANKER, R. D.; CHARNES, A.; COOPER, W. W. Some models for estimating and scale inefficiencies. Management Science, 1984.

BRASIL. Lei 13.360 de 17/11/2016. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2016/lei/L13360.htm Acesso em: 20/05/2019.

BRASIL. Lei nº 8987 de 13 de fevereiro de 1995. Dispõe sobre o regime de concessão e permissão da prestação de serviços públicos previsto no art. 175 da Constituição Federal, e dá outras providências. Disponível em: http://www.planalto.gov.br/ccivil_03/Leis/L8987compilada.htm Acesso em: 12/12/2012. CAMARGO, E.J.S. Programa luz para todos-da eletrificação rural à universalização do acesso à energia elétrica—da necessidade de uma política de estado. Dissertação apresentada programa de pós-graduação em Energia da Universidade de São Paulo. São Paulo, 2010.

CHARNES, A.; COOPER, W. W.; RHODES, E. Measuring the efficiency of decision-making units. European Journal of Operational Research, 1978.

COOPERS & LYBRAND. Projeto de restruturação do setor elétrico brasileiro: cooperativas de eletrificação rural. Relatório VI-2, Ministério de Minas e Energia / Eletrobrás. Brasília, 1997.

FARRELL, M. J. The measurement of productive efficiency. Journal of Royal Statistical Society: Series A, 1957.

FECOERGS – Federação das cooperativas de eletrificação do Estado do Rio Grande do Sul. http://www.fecoergs.com.br/

FUGIMOTO, S.K., A universalização do serviço de energia elétrica acesso e uso contínuo. Dissertação apresentada à escola Politécnica da Universidade de São Paulo para a obtenção do título de mestre em Engenharia. São Paulo: 2005.

GOLANY, B., & ROLL, Y. An application procedure for DEA. OMEGA. Journal of Management Science, 1989.

- JUNIOR, P. N. A.; MELO, I. C.; CELESTINI, G.; REBELATTO, D. A. N. Modelo de controle alocativo de Análise Envoltória de Dados (DEA) para avaliar sistemas de controle de estoque quando há relação entre as variáveis.
- GEPROS. Gestão da Produção, Operações e Sistemas, n. 1, 2018.
- GROTTI, D. A. M. Teoria dos serviços públicos e sua transformação. In: SUNDFELD, C. A. (Org.). Direito Administrativo Econômico. São Paulo, Malheiros Editores, 2000.
- KOCH, N., HANSEN, P.B. Quadro equilibrado de indicadores de desempenho para a gestão estratégica empresarial: Aplicação a uma pequena empresa da área de serviço público de energia elétrica. XXII Encontro Nacional de Engenharia de Produção Curitiba PR, 23 a 25/10/2002. ENEGEP 2002.
- MELLO, J. C. C. B. S.; MEZA, L. A.; GOMES, E. G.; SERAPIÃO, B. P.; LINS, M. P. E. Análise de envoltória de dados no estudo da eficiência e dos benchmarks para companhias aéreas brasileiras. Pesquisa Operacional, v. 23, 2003.
- MEZA, L. A.; BIONDI, L.N.; MELLO, J.C.C.B.S.; GOMES, E.G. ISYDS Integrated System for Decision Support (SIAD Sistema Integrado de Apoio à Decisão): a software package for data envelopment analysis model. Pesquisa Operacional, v. 25, (3), p. 493-503, 2005. Disponível em: http://www.uff.br/decisao/artigos_aplicacao.html. Acesso em 10 de junho de 2013.
- MELLO, J.C.C.B.; BIONDI, L.; GOMES, E.G, ANGULO-MEZA, L. Integrated System for Decision Support (SIAD Sistema Integrado de Apoio a Decisão) A Software Package for Data Envelopment Analysis Model (2005). Pesquisa Operacional, 25. Disponível em: . Acesso em: 10 de junho de 2013. NEVES JÚNIOR, I.J; MOREIRA, S. A.; MENDES, F. Estudo Exploratório da Fronteira de Eficiência do Indicador de Alavancagem Financeira em Empresas do Setor Telecomunicações a partir da Análise
- Envoltória de Dados (DEA). Disponível em: http://www.iapuco.org.ar/Trabajos_2010_Mercosur/A036.pdf>. Acesso em: 10 ago. 2011.
- NEVES, I. J.J.; VASCONCELOS, E.S.; BRITO, J.L. Análise da eficiência na geração de retorno aos acionistas das empresas do setor da construção civil com ações negociadas na BM&FBOVESPA nos anos de 2009 e 2010 por meio da análise envoltória de dados DEA. IX Simpósio de excelência em gestão e tecnologia; tema: Gestão, Inovação e tecnologia para a sustentabilidade. 2012. Disponível em:
- https://periodicos.ufsc.br/index.php/contabilidade/article/view/2175-8069.2012v9n18p41>. Acesso em 25 de maio de 2013.
- DAS NEVES JR, I. J.; MOREIRA, S. A.; MENDES, F. Estudo Exploratório da Fronteira de Eficiência do Indicador de Alavancagem Financeira em Empresas do Setor Telecomunicações a partir da Análise Envoltória de Dados (DEA). Disponível em: <
- http://www.iapuco.org.ar/Trabajos_2010_Mercosur/A036.pdf>. Acesso em: 10 ago. 2011.
- PELEGRINI, M. A., RIBEIRO, F. S. and. ALVES, H. As cooperativas de eletrificação rural no novo cenário do setor elétrico. In: ENCONTRO DE ENERGIA NO MEIO RURAL, 5., 2004, Campinas. Proceedings online. Avaliable
- from: mscript=sci_arttext&pid=MSC0000000022004000100 017&lng=en&nrm=abn>. Acesso em: 15/01/2012.
- PELEGRINI, M. A., RIBEIRO, F. S. and. ALVES, H. As cooperativas de eletrificação rural no novo cenário do setor elétrico. In: ENCONTRO DE ENERGIA NO MEIO RURAL, 5., 2004, Campinas. Proceedings online... Avaliable
- $from: \verb|\http://www.porceedings.scielo.br/scielo.php?script=sci_arttext\&pid=MSC0000000022004000100\\017\&lng=en\&nrm=abn>. Acesso em: 15/01/2012.$
- PRODANOV, C. C. FREITAS, C.F. Metodologia do trabalho científico: métodos e técnicas da pesquisa e do trabalho acadêmico. 2. ed. Novo Hamburgo: Feevale, 2013.
- PRADO, J. A. CRERAL: uma experiência de cooperativa na eletrificação rural e a nova legislação para as cooperativas.. In: ENCONTRO DE ENERGIA NO MEIO RURAL, 4., 2002, Campinas. Disponível em: http://www.porceedings.scielo.br/scielo.php?script=sci_arttext&pid
- MSC000000022002000100041&lng=en&nrm=abn>. Acessado em: 12/11/2011.
- ROSSET, G. C., LORENZI, J., MAROSO, L., SANTOS, D.M., NARDI, V. A regularização da cooperativa regional de eletrificação rural do alto Uruguai. Creral, como agente prestador do serviço público de distribuição de energia elétrica e suas vantagens e desvantagens. Revista de Administração e Ciências Contábeis do IDEAU, Vol.4.n.8. jan/jun/2009.
- SILVA, E. L., MENEZES, E. M. (2000) Metodologia da pesquisa e elaboração de dissertação. Programa de Pós Graduação em Engenharia de Produção, Universidade Federal de Santa Catarina, Florianópolis, 2000.
- VILELA, D. L.; NAGANO, M. S.; MERLO, E. M. Aplicação da análise envoltória de dados em cooperativas de crédito rural. Revista de Administração Contemporânea. v.11, 2007.