

ISSN: 2359-1048 Dezembro 2019

OCORRÊNCIA DE FÁRMACOS NA ÁGUA E AS PRINCIPAIS TÉCNICAS DE REMOÇÃO REVISÃO DE LITERATURA

LIGIA DA SILVA GOMES DOS REIS UNIVERSIDADE NOVE DE JULHO UNINOVE

MONALIZA MEDINA VIEIRO

JOSÉ FREITAS DO NASCIMENTO

MARIA ANTONIETTA LEITÃO ZAJAC UNIVERSIDADE NOVE DE JULHO UNINOVE

HEIDY RODRIGUEZ RAMOSUNIVERSIDADE NOVE DE JULHO UNINOVE

OCORRÊNCIA DE FÁRMACOS NA ÁGUA E AS PRINCIPAIS TÉCNICAS DE REMOÇÃO REVISÃO DE LITERATURA

1. INTRODUÇÃO

A partir da terceira fase da globalização no pós-guerra, a indústria farmacêutica vem se reorganizando com o aumento da produção e da economia, que objetivam pesquisas de novos fármacos, intensificação de produção, métodos de marketing e comercialização de medicamentos (Kornis, Braga & Paula, 2014).

No Brasil o mercado farmacêutico, movimentou entre 2014 e setembro de 2018 mais de 60 bilhões de reais em vendas, apresentando crescimento de mais de 1,5 bilhões se compararmos o movimento mensal neste período, representou aumento considerável de valores em reais nesse segmento industrial (Sindicato da Indústria de Produtos Farmacêuticos no Estado de São Paulo - Sindusfarma, 2018).

No âmbito internacional segue no mesmo sentido, no Equador, por exemplo, observou-se um aumento de 55% no comportamento do mercado farmacêutico no período de 2003 a 2012, já no México, em 2013, pode-se observar mais de 80% da venda de produtos de uso humano provenientes da indústria farmacêutica (Ortiz-Prado, *et.*al, 2014).

No que tange à inovação da indústria farmacêutica a tendência está voltada para área de biotecnologia, não é o forte da produção brasileira, mas cresceu até 2016 cerca de 50% do volume de vendas no rol dos 100 principais produtos farmacêuticos do mercado foram de origem biotecnológica, o equivalente a US\$ 192 bilhões (Vargas *et al.* 2012).

Frente a essa temática, observam-se consequências da medicalização da saúde, que se tornaram bens de consumo devido o capitalismo e a falta de compromisso com a saúde e bem-estar da população, favorecendo o uso irracional de medicamentos, sendo necessário um conjunto de técnicas para enfrentamento das questões conflituosas da tecnologia farmacêutica e a responsabilidade social (Blank & Brauner, 2009).

Considerando as questões pontuadas acima acrescidas do crescimento populacional do país, observa-se a presença de poluentes emergentes que são provenientes de medicamentos e podem acarretar riscos à saúde humana e aos ecossistemas (Costa, Pletsch & Torres, 2014).

Se vive à custa da natureza e o acesso, bem como, a distribuição destes recursos são cruciais para o sustentabilidade do planeta, há décadas a degradação ambiental tornou-se pauta de discussão em âmbito global (O'Neill, Holland & Light, 2008).

Um recurso essencial é a água, segundo a Organização Mundial de Saúde (2017), muitas pessoas ainda ficam doentes e mortem devido ao consumo de água contaminada. Desta forma, o tratamento da água é de suma importância para a qualidade de vida dos seres humano (Costa *et al.*, 2014).

No Brasil o Ministério da Saúde descreve os padrões de potabilidade da água para o consumo humano por meio da Portaria n. 5 de 28 de setembro de 2017, a qual a vigilância Sanitária Municipal é responsável por controlar e realizar as análises feitas de acordo com o tipo de abastecimento realizado pelas concessionárias, entretanto os resíduos provenientes de fármacos não são contemplados.

A comunidade científica desde 1970 tem pesquisado sobre o tema e detectam que o tratamento é ineficiente quanto à remoção de poluentes emergentes de origem farmacológica no tratamento de água (Costa *et.al*, 2014). Frente a isso, a proposta deste artigo de revisão é contribuir na discussão sobre a presença de fármacos que persistem na água mesmo após passar por tratamentos, apontar que a falta de legislação pertinente não corrobora com a

inclusão de tecnologias que removam essas substâncias poluentes no meio aquoso e contextualizar as técnicas de remoção dos fármacos.

Pesquisas tem constatado que o tratamento de esgoto tradicional é ineficiente quanto à remoção de resíduos de origem farmacológica, indicando a limitação deste processo, o que pode acarretar riscos à saúde humana e ao meio ambiente. Outro ponto importante é quanto à falta legislação pertinente, que verse sobre a obrigação de uso de técnicas de remoção destas substancias poluentes. Para tanto, o estudo tem como proposito contribuir na discussão sobre a presença destes compostos persistentes na água mesmo após tratamento e sobre as técnicas de remoção pesquisadas para removê-los do meio aquoso.

2. REFERENCIAL TEÓRICO

2.1 Potabilidade Hídrica

A água é vital para a sobrevivência dos seres humanos, porém caso não seja tratada de forma adequada sua ingestão pode ocasionar graves enfermidades, conhecidas como doenças de veiculação hídrica, que estão relacionadas às condições de abastecimento de água e a precariedade da higiene pessoal e pode ser evitadas ou minimizadas pela coleta e tratamento do esgoto doméstico, de acordo com (Capobianco, 2007).

No entanto a cada dia se torna mais preocupante a situação da contaminação do ecossistema aquático em virtude do crescimento da população, descarte indevido de resíduos de vários segmentos da indústria e mesmo domésticos. Segundo Allan (2004) e Menezes *et al.* (2014) os fatores antropogênicos são a principal causa da redução da qualidade dos corpos d'água e fontes de abastecimento de água no Brasil.

É importante relembrar que nos corpos hídricos ocorrem processos de em menor ou maior grau afetam as características físicas, químicas e biológicas e por consequência a qualidade e potabilidade da água, de acordo com a publicação Vigilância e Controle da Qualidade da Água para Consumo Humano do Ministério da Saúde (MS, 2006).

A capacidade de dissolução de substancias e transporte de partículas que são características dos líquidos, são relevantes quando se pretende discutir as condições de potabilidade hídrica.

De acordo com publicação as principais características da água estão divididas em: físicas (Temperatura, Sabor, Odor, Cor, Turbidez e Condutividade Elétrica); químicas (Alcalinidade, pH, Acidez e Dureza) e biológicas (Presença de Microrganismos e Bactérias Coliformes).

A preocupação com a qualidade da água teve início nos anos 1970 com estudos nos Estados Unidos que deram origem a uma norma de potabilidade, a Safe Drinking Water Act (1974). Segundo Freitas e Freitas (2005) essa norma orientava as companhias de abastecimento a atender o padrão de potabilidade adequado a não apresentar riscos ao consumo humano e atualmente, o organismo responsável pela indicação e acompanhamento dos indicadores de qualidade de água para consumo humano é a Organização Mundial da Saúde (OMS).

Ainda de acordo com Freitas e Freitas (2005), no Brasil desde 1977, tem sido regulamentado os padrões de potabilidade de água para consumo humano por meio de decretos (79.367/77) e portarias (56/77, 36/90 e 1469/00) numa parceria do Ministério da Saúde - MS, da OMS e da Organização Pan-Americana de Saúde - OPAS, que contribuiu com a classificação dos sistemas de abastecimentos em: sistema coletivo, conjunto de obras e equipamentos destinados à distribuição de água a população que estão sob a gestão do poder público ou sistema alternativo composto por soluções alternativas de abastecimento de água como poços, fontes e veículos transportadores.

2.2 Poluição Hídrica

O aumento da atividade econômica como geradora de mudanças ambientais, entre elas a poluição das águas, em escala mundial, em que a velocidade de recuperação dos recursos da natureza é menor que a velocidade do crescimento e desenvolvimento econômico da sociedade, considerando ainda que o ecossistema não consegue absorver o grande volume de resíduos despejado pelo tal "progresso" (Silva, 2006).

No ambiente aquático, percebe-se que o despejo *in natura* de esgoto doméstico ou industrial continua sendo uma das principais fontes de poluição (Carapeto, 1999).

Esse volume de dejetos é indicado como responsável pelo fenômeno chamado eutrofização que é o processo de degradação do corpo hídrico com a diminuição do nível de oxigênio dissolvido na água e o aumento de nutrientes em decomposição, resultando na morte de espécies animais e vegetais, de acordo com Langanke (2018).

O processo de eutrofização dos corpos d'água, trata-se do aumento da presença de cianobactérias, organismos fotossintéticos também chamados de algas azuis, que por vezes são indicadores de má qualidade da água e em grande concentração elas se desenvolve de forma descontrolada favorecida pelo aumento da temperatura e pode cobrir grandes superfícies de água (Carapeto, 1999).

Diversos fármacos foram identificados na literatura por contaminar corpos hídricos, antibióticos, hormônios, antilipêmicos e anti-inflamatórios são alguns exemplos, após a administração do fármaco no organismo seja humano ou veterinário é metabolizado para finalidade pretendida e depois excretado, no entanto parte pode ser eliminado na forma inalterada, persistindo no meio ambiente e promovendo organismos resistente causando efeitos indesejáveis a saúde humana e malefícios a vida aquática (Bila & Dezzoti, 2003).

Os resíduos farmacológicos provenientes do processo de produção são conhecidos como "Poluentes Emergentes" e suas contaminações ocorrem também pelo descarte indevido além da produção de metabólitos humanos e veterinários, que não são eliminados no processo de tratamento de esgotos (Borrely, Caminada, Ponezi, Santos & Silva, 2012).

2.3 Técnicas de Remoção de Fármacos

O descarte de esgotos sanitários *in natura* nos cursos de água tem sido foco de contaminação dos recursos hídricos por medicamentos e produtos de higiene e limpeza, visto que em muitas localidades há déficit de infraestrutura em saneamento. Outra fonte de contaminação é o lançamento de efluentes de estações de tratamento de esgotos sanitários, uma vez que os fármacos são substâncias recalcitrantes aos processos convencionais de tratamento, conforme Tran *et al.* (2014).

Estudos recentes reportam sobre a detecção da presença de fármacos como ácido acetilsalicílico e salicílico, anlodipino, cafeína, carbamazepina, cetoprofeno, ciprofloxacina, diclofenaco, esparfloxacina, gemifloxacina, ibuprofeno, moxifloxacina, naproxeno, ofloxacina, paracetamol e rosuvastatina em águas superficiais e subterrâneas, indicando a limitação dos sistemas de tratamento de esgotos na remoção destes compostos recalcitrantes que podem se tornar um risco à saúde humana e ao ambiente aquático, como descrevem Tran *et al.* (2014), Shanmugam *et al.* (2014) e Ashfaq *et al.* (2017).

Embora as concentrações dos fármacos ainda sejam vestigiais no ambiente, acredita-se que estes possam atingir concentrações potencialmente tóxicas devido ao seu crescente consumo, é que relata Lima *et al.* (2016). Os autores mencionam ainda que infelizmente não há tratamento específico para remoção de fármacos, e que algumas técnicas tem sido aplicadas com o objetivo de minimizar o impacto dessa contaminação com o aumento do índice de remoção de fármacos, a seguir exemplos de técnicas aplicadas:

a) Clarificação: faz parte do sistema convencional de tratamento de águas;

- b) Cloração: é utilizado no processo de desinfecção apresenta eficiência variável na remoção de fármacos, depende da dosagem e do tipo de contaminante que se deseja remover e seu uso em águas contendo fármacos favorece a geração de subprodutos com toxicidade pouco conhecida.
- c) Adsorção com Carvão: técnica considerada, com custo-benefício adequado, de alta eficiência na remoção, superiores a 95%, no uso de Carvão Ativado Pulverizado CAP ou Carvão Ativado Granulado CAG.
- d) Oxidação Avançada: geram radicais hidroxilas em sistemas que utilizam raios UV, peróxido de hidrogênio ou ozônio, sua eficiência varia em função da técnica que se utiliza na geração dos radicais hidroxilas.
- e) Separação por Membrana: é pouco utilizado no país, devido seu alto custo, porém é uma alternativa para adequação do padrão de potabilidade.

2.4 Legislação

No que se referem à legislação os medicamentos enquanto resíduos se encaixam na Política Nacional de Resíduos Sólidos - PNRS pela Lei n. 12.305 de 2 de agosto de 2010, que norteam o correto manejo dos resíduos no país e consequentemente redução do impacto ambiental. Sendo aplicada a todos geradores de resíduos sólidos sendo de natureza física ou jurídica com princípios de prevenção e precaução.

Em relação ao monitoramento e fiscalização sanitária ao qual o medicamento está sujeito enquanto resíduo proveniente de serviços de saúde, a ANVISA publicou a RDC n.306 de 7 de dezembro de 2004 revogada pela RDC n.222 de 28 de março de 2018 que regulamenta as boas práticas de gerenciamento de resíduos de serviços de saúde.

A abrangência da RDC n. 222/18 se aplica a todos os geradores de serviços de saúde, que são definidos pelos serviços de assistência à saúde humana ou animal, por exemplo, assistência domiciliar, laboratórios analíticos, necrotérios, funerárias e serviços de embalsamento, farmácias e drogarias, distribuidoras, ensino e pesquisa entre outras.

Há ainda uma resolução do Conselho Nacional do Meio Ambiente - CONAMA (2005) que dispõe sobre o tratamento e a disposição final dos RSS e dá outras providências. Os medicamentos se encaixam no grupo B da divisão dos resíduos provenientes dos serviços de saúde e os que não apresentam risco de periculosidade podem ser enviados a um aterro sanitário licenciado e quando na forma líquida despejado na rede de esgoto respeitando as regras das empresas coletoras.

Abrangendo uma forma da cadeia produtiva se preocupar com o medicamento após uso, tem-se a logística reversa proposta pela PNRS. Definida como (2010, p.2) como "instrumento de desenvolvimento econômico e social caracterizado por um conjunto de ações, procedimentos e meios destinados a viabilizar a coleta e a restituição dos resíduos sólidos ao setor empresarial [...] ou outra destinação final ambientalmente adequada". Desta forma, incorporando o conceito ciclo de vida do produto de maneira mais adequada, a logística reversa propõe medidas de recolhimento por parte da indústria.

No que se refere à logística reversa exclusiva de medicamentos, não há uma política em âmbito nacional específica para esse fim, nem mesmo pela PNRS, porém há iniciativas municipais, estaduais, acordo setorial, bem como a criação de um Comitê Orientador, que aprovou em 2013 um edital de chamamento para um acordo setorial com metas ambiciosas de destinação final ambientalmente adequada, que, no entanto não há dados mais consistentes sobre o andamento (Graciani & Ferreira, 2014).

3. METODOLOGIA

Os procedimentos metodológicos foram realizados por meio de busca eletrônica nas bases de dados Scopus, biblioteca virtual Scielo, bem como, busca manual de artigos. A revisão de literatura foi sistematizada com foco em estudos de detecção e/ou quantificação de "fármacos na água" e técnicas de "remoção de fármacos".

Com a finalidade de delimitar o objeto de estudo e o campo de investigação, optouse pela seleção de publicações em periódicos reconhecidos na forma de artigo em língua portuguesa ou inglesa. Os artigos levantados não compreenderam uma delimitação de período, desta forma, ano de publicação não foi um critério de inclusão/exclusão.

Após a identificação inicial dos periódicos, foram realizadas triagens por pares, em que foram retiradas as duplicatas, por meio da leitura de título e resumo, após esta etapa os estudos restantes foram lidos na íntegra. Foram incluídos no trabalho e analisados apenas estudos que apresentaram resultados de identificação, quantificação e/ou remoção de fármacos ou informações sobre a determinação dessas substâncias poluentes em meio aquático.

O critério de seleção dos artigos foi fundamentado na abordagem do tema proposto e os artigos excluídos desta revisão foram aqueles que apresentaram as seguintes características:

- a. Análises focadas na farmacologia ou características químicas dos fármacos;
- b. Análises de amostras de urinas para verificar a excreção de resíduos de medicamentos;
- c. Análises que focaram apenas na metodologia das técnicas de identificação sem discutir o resíduo farmacológico.

Após esta triagem, foram selecionados 50 artigos como objeto de estudo deste trabalho, dos quais 14 são provenientes da base de dados Scielo e 36 da Scopus. Para auxiliar no processo de gerenciamento das bibliografias, foram utilizados Mendeley Reference Manager e o Microsoft Excel versão 2016.

4. RESULTADOS E DISCUSSÃO

Foram realizadas buscas nas bases de dados Scopus e Scielo, utilizando as palavras chaves fármacos na água e remoção de fármacos, foram encontrados 151 artigos e após os critérios de elegibilidade foram selecionados 50 artigos. A tabela 1 apresenta os periódicos, bem como os principais fármacos e/ou classes farmacológicas que os autores pontuaram em suas publicações.

ÍNDICE	ANO	τίτυιο	AUTOR	PERIÓDICO	FÁRMACOS E/OU CLASSES FARMACOLÓGICAS
11	2016	New Sol–Gel Hybrid Material in Solid Phase Extraction Combined with Liquid Chromatography for the Determination of Non-steroidal Anti- inflammatory Drugs in Water Samples	Abd Rahim, M. et al.	Chromatographia, 79(7–8), 421–429	AINEs: diclofenaco sódico, cetoprofeno e ácido mefenâmico
12	2006	Comparison of different solid-phase extraction materials for sample preparation in the analysis of veterinary drugs in water samples	Mutavdžić, D. <i>et al</i> .	Journal of Planar Chromatography - Modern TLC, 19(112), 454–462	Enrofloxacina, Norfloxacina, Oxitetraciclina, Sulfadiazina, Sulfametazina, Penicilina G / Procaína e Sulfaguanidina
13	2019	Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic sorbent for the separation of polar non-steroidal anti-inflammatory drugs in waters	Li, N., Chen, J., & Shi, Y P.	Talanta, 191, 526-534	AINEs: diclofenaco sódico, cetoprofeno e naproxeno
14	2015	Innovative sampling and extraction methods for the determination of nonsteroidal anti-inflammatory drugs in water	Tanwar, S., Di Carro, M., & Magi, E.	Journal of Pharmaceutical and Biomedical Analysis, 106, 100–106	AINEs: Diclofenaco, Cetoprofeno, Ácido Mefenâmico, Naproxeno, Ibuprofeno, Ácido Acetilsalicílico e Cetoprofeno-d3
15	2012	Determination of non-steroidal anti- inflammatory drugs in water samples by solid-phase microextraction based sol-gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes coated fiber	Sarafraz-Yazdi, A. et al.	Analytica Chimica Acta, 720, 134–141.	AINEs: Ibuprofeno, Naproxeno e Diclofenaco
16	2018	Fabrication and characterization of metal organic frameworks/ polyvinyl alcohol cryogel and their application in extraction of non-steroidal anti-inflammatory drugs in water samples.	Wang, Y. et al.	Analytica Chimica Acta, 1022, 45–52.	AINEs: Incodmetacina, Fenilbutazona, Nimesulida
17	2014	Degradation of drugs in water with advanced oxidation processes and ozone	Quero-Pastor, M. et al.	Journal of Environmental Management, 137, 197–203.	AINEs: Ibuprofeno e Ácido Clofíbrico
18	2017	Identification and quantification of 12 pharmaceuticals in water collected from milking parlors: Food safety implications	Veiga-Gómez, M. et al.	Journal of Dairy Science, 100(5), 3373–3383	Antimicrobianos, Coccidiostáticos, Antifúngico e Corticosteróide
19	2009	Determination of widely used non- steroidal anti-inflammatory drugs in water samples by in situ derivatization, continuous hollow fiber liquid-phase microextraction and gas chromatography-flame ionization detector	Es'haghi, Z.	Analytica Chimica Acta, 641(1–2), 83–88	AINEs: Ibuprofeno, Naproxeno e Cetoprofeno
20	2009	JEM Spotlight: Recent advances in analysis of pharmaceuticals in the aquatic environment	Wong, C. S., & MacLeod, S. L.	Journal of Environmental Monitoring, 11(5), 923–936	AINEs, Antibióticos, Antidepressivos, Anticonvulsivantes, Antihipertensivos, Antiulcerosos, Hormônios e drogas de abuso
21	2007	Ultraperformance liquid chromatography tandem mass spectrometry analysis of stimulatory drugs of abuse in wastewater and surface waters	Huerta-Fontela, M., Galceran, M. T., & Ventura, F.	Analytical Chemistry, 79(10), 3821–3829	Nicotina, Cotinina, Cafeína, Paraxantina, Anfetamina, Metanfetamina, 3,4- Metilenodioxianfetamina (MDA), 3,4- Metilenodioximetanfetamina (MDMA), cocaina, Benzoilecgonina (BE), Ácido Lisérgico Dietilamida (LSD), Cetamina, Fenciclidina (PCP) e Fentanil.
22	2015	Fast determination of 40 drugs in water using large volume direct injection liquid chromatography- tandem mass spectrometry	Boix, C. et al.	Talanta, 131, 719-727	AINEs, Antibióticos, Antihipertensivos, Benzodiazepínicos, Anticonvulsivantes, Antidepressivos e drogas de abuso

ÍNDICE	ANO	τίτυιο	AUTOR	PERIÓDICO	FÁRMACOS E/OU CLASSES FARMACOLÓGICAS
23	2007	Determination of endocrine disrupting compounds and acidic drugs in water by coupling of derivatization, gas chromatography and negative-chemical ionization mass spectrometry	Möder, M. et al.	Clean - Soil, Air, Water, 35(5), 444–451	AINEs: Ácido Clofibrico, Ibuprofeno, Naproxeno, Diclofenaco e Genfibrozila, Bezafibrato, 17a-ethinylestradiol, 4- nonilfenol técnico e Bisfenol A
24	2011	Simultaneous determination of a selected group of cytostatic drugs in water using high-performance liquid chromatography-triple-quadrupole mass spectrometry	Martín, J. et al.	Journal of Separation Science, 34(22), 3166–3177	Citostáticos
25	2007	Analysis of trace levels of sulfonamides in surface water and soil samples by liquid chromatography- fluorescence	Raich-Montiu, J. et al.	Journal of Chromatography A, 1172(2), 186–193	Antibióticos Sulfonamidas
26	2012	Pre-concentration of non-steroidal anti-inflammatory drugs in water using dispersive liquid-liquid and single- drop microextraction with high- performance liquid chromatography	Sarafraz-Yazdi, A et al.	Journal of Separation Science, 35(18), 2476–2483	AINEs: Naproxeno, Diclofenaco e Ibuprofeno,
27	2016	GABAergic anxiolytic drug in water increases migration behaviour in salmon	Hellström, G. et al.	Nature Communications, 7	Oxazepam
28	2006	Analysis of nonsteroidal anti- inflammatory drugs in water samples using microemulsion electrokinetic capillary chromatography under pH- suppressed electroosmotic flow with an on-column preconcentration technique	Macià, A. et al.	Chromatographia, 63(3-4), 149-154	AINEs: Diclofenaco, Ibuprofeno, Fenoprofeno, Cetoprofeno e Napoxeno
29	2009	Flux enhancement of stagnant sandwich compared to supported liquid membrane systems in the removal of Gemfibrozil from waters	Molinari, R. et al.	Journal of Membrane Science, 340(1–2), 26–34	Genfibrozila
30	2012	Pharmaceutical products in the environment: Sources, effects and risks Productos farmacéuticos en el ambiente: Fuentes, efectos y riesgos	Narvaez V, J. F., & Jimenez C, C.	Vitae, 19(1), 93–108	AINEs: Ibuprofeno, Ácido Acetilsalicílico, Cetoprofeno, Diclofenaco, Naproxeno, Paracetamol; Anti-hipertensivo: Proponalol, Metoprolol, Atenolol, Verapamil, Enalapril; Antibióticos: Tetraciclina, Gentamicina, Claritromicina, Ciprofloxacino, Norfloxacino, Penicilina, Imipemem, Azitromicina. Drogas do sistema endócrino: Etinilestradiol, Estriol, Carbamazepina, Fluoxeina, Clofibrato, Nonifenol
31	2016	Fate of three anti-influenza drugs during ozonation of wastewater effluents - degradation and formation of transformation products	Fedorova, G. et al.	Chemosphere, 150, 723–730	Amantadina, Oseltamivir e Zanamivir
32	2006	Membrane-assisted liquid-liquid extraction coupled with gas chromatography-mass spectrometry for determination of selected polycyclic musk compounds and drugs in water samples	Einsle, T.	Journal of Chromatography A, 1124(1–2), 196–204	Cafeína e Carbamazepina
33	2010	The development of SPE procedures and an UHPLC method for the simultaneous determination of ten drugs in water samples	Baranowska, I., & Kowalski, B.	Water, Air, and Soil Pollution, 211(1–4), 417–425	AINEs: Paracetamol, Ácido Acetilsalicílico, Metamizol e Cetoprofeno; Corticosteroides: Prednisolona, Dexametasona; β-bloqueadores: Sotalol, Metoprolol, Propranolol e Carvedilol
34	2008	Electrokinetic supercharging for on- line preconcentration of seven non- steroidal anti-inflammatory drugs in water samples	Dawod, M. et al.	Journal of Chromatography A, 1189(1–2), 278–284	AINEs: Naproxeno, Diclofenaco, Diflunisal, Fenoprofeno, Ibuprofeno, Indometacina e Cetoprofeno

ÍNDICE	ANO	τίτυιο	AUTOR	PERIÓDICO	FÁRMACOS E/OU CLASSES FARMACOLÓGICAS
47	2014	Avaliação da remoção de fármacos e de desreguladores endócrinos em águas de abastecimento por clarificação em escala de bancada	Lima, D.R.S. et al .	Quim. Nova, 37(5), 783- 788	Diclofenaco (AINEs), Sulfametoxazol, Bisfenol A, Estradiol, Etinilestradiol, Estrona e Estriol
48	2014	Environmental contamination by fluoroquinolones	Frade, V.M.F et al.	Braz. J. Pharm., 50(1), 41-54	Fluoroquinolonas
49	2013	Remoção de fármacos e desreguladores endócrinos em estações de tratamento de esgoto: revisão da literatura	Aquino, S.F.; Brandt, E.M.F. & Chernicharo, C.A.L.	Engenharia Sanitária e Ambiental, 18 (3), 187- 204	AINEs: Ibuprofeno e Diclofenaco; Sulfametoxazol, Trimetropina e Tetraciclina
50	2012	Remoção de diclofenaco, ibuprofeno, naproxeno e paracetamol em filtro ecológico seguido por filtro de carvão granular biologicamente ativado	Erba, C.M. et al .	Engenharia Sanitária e Ambiental, 17(2), 137- 142	AINEs: Ibuprofeno, Naproxeno, Diclofenaco e Paracetamol

ÍNDICE	ANO	τίτυιο	AUTOR	PERIÓDICO	FÁRMACOS E/OU CLASSES FARMACOLÓGICAS	
35	2009	Simultaneous ultra-high-pressure liquid chromatography-tandem mass spectrometry determination of amphetamine and amphetamine-like stimulants, cocaine and its metabolites, and a cannabis metabolite in surface water and urban wastewater	Bijlsma, L. <i>et al</i> .	Journal of Chromatography A, 1216(15), 3078–3089	Anfetamina, Metanfetamina, 3,4- metilenodioxiamfetamina, 3,4- metilenodioximetanfetamina, 3,4- metilenodioximetanfetamina, cocaina, cocaetileno, benzoilecgonina. norbenzoilecgonina, norcocaina e 11-nor-9- carboxi-0 9-tetrahidrocanabinol, um metabolito do 0 9-tetrahidrocanabinol	
36	2018	Magnetic sporopollenin- cyanopropyltriethoxysilane-dispersive micro-solid phase extraction coupled with high performance liquid chromatography for the determination of selected non-steroidal anti- inflammatory drugs in water samples	Abd Wahib, S. M. et al.	Journal of Chromatography A, 1532, 50–57	AINEs: Cetoprofeno, Ibuprofeno, Diclofenaco, Ácido Mefenámico	
37	2017	Fármacos e desreguladores endócrinos em águas brasileiras: ocorrência e técnicas de remoção	Lima, D.R.S.; Tonucci, M.C.; Libânio, M. & Aquino, S. F.	Engenharia Sanitária e Ambiental, 22 (6), 1043- 1054	AINEs: Diclofenaco; Bisfenol A, Estradiol, Etinilestradiol, Estrona e Estriol	
38	2017	Ocorrência de diclofenaco e naproxeno em água superficial no município de Três Lagoas (MS) e a influência da temperatura da água na detecção desses anti-inflamatórios	Americo-Pinheiro, J.H.P. et al.	Engenharia Sanitária <i>e</i> Ambiental, <i>22</i> (3), 429- 435	AINEs: Diclofenaco e Naproxeno	
39	2016	Toxicidade ambiental de efluentes advindo de diferentes laboratórios de uma farmácia magistral	Pinto, L.H. et al.	Rev. Ambient. Água, 11(4),819-832	Psicotrópicos, Hormônios e outros não especificados	
40	2013	Nonsteroidal Anti-Inflammatory Drug Determination in Water Samples by HPLC-DAD under Isocratic Conditions	Ascar L. et al.	Journal of the Brazilian Chemical Society , 24 (7), 1160- 1166	AINES: Ibuprofeno, Naproxeno, Diclofenaco e Cetoprofeno	
41	2011	Optimization and Validation of a Method using SPE and LC-APCI-MS/MS for Determination of Pharmaceuticals in Surface and Public Supply Water	Cardoso, L.V. et al.	Journal of the Brazilian Chemical Society, 22 (10), 1944- 1952	Sulfametoxazol, Diclofenaco, Atenolol, Fluoxetina e Cafeina	
42	2011	Identificação de compostos orgânicos e farmacêuticos em esgoto hospitalar utilizando cromatografia gasosa acoplada a espectrometria de massa	Paiva, F.V. et al.	Engenharia Sanitária e Ambiental, 16(1), 37-44	Cafeina, Diisobutilifalato, Aminoantipirina, Di(2-etil hexil) Ftalato (DEHP), Estradiol, Hormônios, Analgésicos (butorfanol), Antibióticos (equinomicina), Carbamazepina, Tiadiazole-amine e Metabólitos de Analgésicos e AINEs	
43	2016	Utilização de carvão ativado de dendê <i>in natura</i> e funcionalizado em meio ácido na adsorção de paracetamol	Ferreira, R.C. et al.	Matéria (Rio de Janeiro), <i>23</i> (1), e- 11968	AINEs: Paracetamol	
44	2018	Oxidação de fármacos por cloro e formação de subprodutos em amostras aquosas em escala de bancada	Souza, B.P. et al.	Engenharia Sanitária e Ambiental, 23 (2), 207- 216	Sulfametoxazol, Diclofenaco (AINEs) e Estradiol	
45	2016	Uso de filtros de carvão ativado granular associado a microrganismos para remoção de fármacos no tratamento de água de abastecimento	Borges, R.M. et al.	Engenharia Sanitária e Ambiental, 21 (4), 709- 720	AINEs: Ibuprofeno, Naproxeno e Diclofenaco; Amoxicilina	
46	2015	Uso de fotorreatores UV para a remoção de diclofenaco, bezafibrato e etinilestradiol de esgoto tratado em sistema UASB-FBP	Faria de E. <i>et al</i> .	Engenharia Sanitária e Ambiental, 20 (3), 493- 502	Diclofenaco (AINEs), Bezafibrato e Etinilestradiol	

Quadro 1:Periódicos provenientes da revisão sistemática da literatura Fonte: Elaborado pelos próprios autores

Nessa revisão com busca sistematizada pode-se observar artigos de revisão e periódicos que realizaram experimentos *in situ*, seja para identificação e quantificação de fármacos na água ou para discutir técnicas de quantificação e remoção dos fármacos, porém sempre abordando a temática dos medicamentos enquanto poluentes emergentes.

Dentre os 50 artigos inseridos nessa revisão, 31 trabalhos abordavam os medicamentos da classe dos anti-inflamatórios denominados pela sigla AINES conforme observado na Tabela 1.

Os AINES são fármacos amplamente utilizados na medicina humana e veterinária e devido as suas estruturas polares e alto grau de solubilidade não são eliminados completamente na estação de tratamento de esgoto, desta forma são capazes de penetrar em todas as etapas de infiltração natural e entrar na água subterrânea e potável, diversos estudos mostram os efeitos resultantes da exposição aos AINES, especialmente para organismos aquáticos (Dawod, Breadmore, Guijt & Haddad, 2009; Ascar, *et al.*, 2013).

Embora a concentração dos resíduos de medicamentos no ambiente aquático seja baixa demais para representar um risco muito grave, em concentrações de ng/L⁻¹, autores

apontam que não se sabe se outros receptores em organismos não-alvo são sensíveis a resíduos individuais ou se as combinações das drogas podem atuar por sinergismo, ainda discutem que o crescente risco de intoxicação necessita de testes quantitativos confiáveis para detecção de baixo nível de contaminantes presente em matrizes biologicamente significativas e conclui que é necessário desenvolver uma técnica analítica conveniente para estudar a ocorrência e conclusão da presença dos resíduos no meio ambiente (Es'haghi, Z., 2009; Wong & MacLeod, 2009).

Outra classe farmacológica que tem relevância nas publicações são os antibióticos, nessa revisão foram observados 14 artigos que abordavam esse grupo farmacológico uns retratavam os medicamentos pelo princípio ativo e outros por meio do grupo terapêutico denominado antibióticos.

Os antibióticos atuam contra os micro-organismos para combater infecções e são amplamente discutidos na literatura por sua gravidade em gerar bacilos resistentes, são observados na prática veterinária, pois seus metabólitos são excretados pelos animais e podem servir de fertilizante, em alguns países Europeus o grupo das sulfonamidas são frequentemente utilizados na criação de animais e podem persistir no meio ambiente (Raich-Montiu, Folch, Compañó, Granados & Prat, 2007; Veiga-Gómez, Nebot, Franco, Miranda, Vázquez, & Cepeda, 2017).

Um estudo especificamente pesquisou englobando os fármacos citostáticos, esse grupo tem tido pouca abordagem principalmente devido à falta de um método que faça análise simultânea dos compostos, sendo o foco os antibióticos, hormônios e anti-inflamatórios conforme publicado por Martín, Camacho-Muñoz, Santos, Aparicio, & Alonso (2011).

Os mecanismos de ação dos citostáticos são altamente potentes e possuem ações mutagênicas, teratogênicas e carcinogênicas, ou seja, podem causar câncer e lesionar fetos, então são fármacos ambientalmente relevantes, nos países desenvolvidos, a demanda por tratamento quimioterápico continua a aumentar em torno de 10% ao ano e existem diversos tipos de drogas de consumo diário nos hospitais (Martín, Camacho-Muñoz, Santos, Aparicio, & Alonso, 2011).

As drogas de abuso também foram discutidas nesses achados, no último ano pelo menos 200 milhões de pessoas no mundo consumiram drogas ilícitas, como por exemplo, anfetaminas, cocaína e ecstasy, essas drogas podem atingir estações de tratamento de água residuais ou apresentar-se na forma do seu metabólito, seus efeitos ainda são desconhecidos no meio aquático, porém devido sua psicoatividade eles não podem ser negligenciados, percebe-se que há aumentos notáveis da concentração de ectasy no fim de semana em estudos que avaliaram estações de tratamento de água residuais Huerta-Fontela, Galceran, Martin-Alonso & Ventura, 2008; Cunha, Araújo & Marques, 2017; Yadav, Short, Aryal, Gerber, Akker & Saint, 2017).

Os metabólitos dos fármacos são retratados nos achados dessa revisão, a título de esclarecimento, esses produtos surgem após sofrerem ações pelo metabolismo humano, no processo de biotransformação dos medicamentos para serem absorvidos ou excretados podem ser gerados metabólitos ativos ou não, a metabolização de AINES por exemplo, pode gerar compostos mais perigosos com presença de efeitos adversos no sistema nervoso central e alta absorção dérmica e esses compostos farmacêuticos mesmo em concentrações baixas são introduzidos no meio ambiente e podem afetar a saúde dos ecossistemas aquáticos e terrestres (Manso, Larsson & Jönsson, 2014).

Com relação as técnicas que foram utilizadas para identificar os fármacos pode-se observar que é um grande desafio, pois atingir um nível de detecção baixo, na ordem ng/L ⁻¹ é complexo, são necessários tratamentos com técnicas analíticas como cromatografia gasosa,

espectrometria de cromatografia líquida, eletroforese capilar e cromatografia líquida de alta eficiente, como foi discutido na pesquisa de Yaacob, Jamil, Kamboh, Ibrahim & Mohamad (2018) em que foram analisados AINES que é o principal grupo farmacológico desse artigo e altamente discutido na literatura científica.

As análises cromatográficas são observadas em diversos trabalhos e pode-se presumir que é uma forma confiável de realizar as identificações (Huerta-Fontela, Galceran, & Ventura, 2007; Boix *et al.*, 2015; Möder *et al.*, 2007; Martin *et al.*2017; Ascar, *et al.*, 2013).

Diversas investigações têm sido realizadas para avaliação toxicológica da presença dos fármacos na água, no entanto ainda não há evidências e dados claros referentes ao risco à saúde humana associada ao consumo em baixos níveis de produtos farmacêuticos (ng/L) via água potável ou alimentos, já que os testes de ecotoxicidade são realizados em doses terapêuticas pequenas e em curto prazo (Veiga-Gomez *et al.* 2017).

Pode se correlacionar a presença de fármacos na água com o crescimento populacional e industrial, bem como, a degradação dos recursos hídricos com a presença de metais pesados, produtos de higiene e farmacêuticos (Americo-Pinheiro *et al.* 2017).

Na análise desse estudo não ficou estabelecido ano de publicação como um critério de exclusão ou inclusão, pois se pretendia analisar as publicações e apontar o período em que o assunto foi mais discutido em virtude do total de publicações. O gráfico 1 apresenta a distribuição dos artigos de acordo com o ano de publicação.

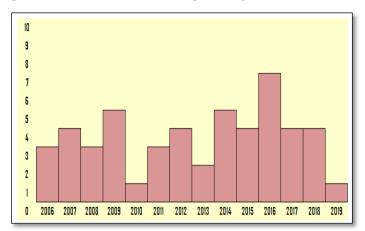


Gráfico 1:Linha do tempo dos periódicos selecionados na revisão Fonte: Elaborado pelos autores

Observou-se que a distribuição é bastante homogênea entre o período de 2006 a 2018 com média em torno de quatro publicações por ano, exceção feita ao ano de 2010 com apenas 1 publicação e 2016 com 7 publicações que foram os extremos desse comparativo. O ano de 2019 aparece com 1 artigo, pois já foi aprovado mais ainda não publicado.

Também foi observado por Yadav, Short, Aryal, Gerber, Akker & Saint (2017) um crescente interesse por pesquisas que envolvem poluentes em águas residuais, superficiais e potáveis no ano de 2016 quando comparado a 2010, o estudo dos referidos autores focava na detecção de drogas ilícitas.

Após a análise dos artigos selecionados realizou-se a separação dos artigos que apresentavam técnicas de remoção de determinados fármacos. A tabela 2 apresenta as principais técnicas de remoção de fármacos em meio aquoso que foram discutidas nos artigos pesquisados.

TABELA 2 - PRINCIPA	AIS TÉCNICAS DE REMOÇÃO ID	ENTIFICADAS
τίτυιο	FÁRMACOS	TÉCNICAS DE REMOÇÃO
Utilização de carvão ativado de dendê in natura e funcionalizado em meio ácido na adsorção de paracetamol	Paracetamol	Adsorção com carvão ativado
Oxidação de fármacos por cloro e formação de subprodutos em amostras aquosas em escala de bancada	Sulfametoxazol, diclofenaco e estradiol	Oxidação com cloro
Fármacos e desreguladores endócrinos em águas brasileiras: ocorrência e técnicas de remoção	Diclofenaco, bisfenol - A, estradiol, etinilestradiol, estrona e estriol	Comparativo entre técnicas
Uso de filtros de carvão ativado granular associado a microrganismos para remoção de fármacos no tratamento de água de abastecimento	lbuprofeno, naproxeno, amoxicilina e diclofenaco de sódio	Filtração com carvão ativado
Uso de fotorreatores UV para a remoção de diclofenaco, bezafibrato e etinilestradiol de esgoto tratado em sistema UASB-FBP	Diclofenaco, bezafibrato e etinilestradiol	Radiação UV
Avaliação da remoção de fármacos e de reguladores endócrinos em águas de abastecimento por clarificação em escala de bancada	Diclofenaco, sulfametoxazol, estradiol, etinilestradiol, bisfenol - A, estrona e estriol	Clarificação
Environmental contamination by fluoroquinolones	Fluoroquinolonas	Processo de Oxidação Avançado
A Review on the Degradation of Organic Pollutants in Waters by UV Photoelectro-Fenton and Solar Photoelectro-Fenton	Paracetamol, ibuprofeno, acido salicílico, ácido ofibrico, loroxilenol, enrofloxacina, flumequina e sulfametazina, propranolol e metropolol	Processo de Oxidação Avançado
Remoção de fármacos e desreguladores endócrinos em estações de tratamento de esgoto: revisão da literatura	lbuprofeno, diclofenaco, sulfametoxazol, trimetoprima e tetraciclina	Tratamento Convencional
Remoção de diclofenaco, ibuprofeno, naproxeno e paracetamol em filtro ecológico seguido por filtro de carvão granular biologicamente ativado	Diclofenaco, ibuprofeno, naproxeno e paracetamol	Filtração com carvão ativado
Fonte: Elaborada pelo	s autores com base na análise dos artigos	pesquisados.

A tabela 3 mostra o comparativo entre as técnicas de remoção de fármacos de acordo com o estudo realizado por Lima *et al.* (2016).

TABELA 3 - COMPARATIVO ENTRE TÉCNICAS DE REMOÇÃO

Descrição do	Percentual de Remoção (%)		
Contaminante	Mínimo	Máximo	
Bisfenol - A	25	40	
Diclofenaco	0	10	
Estrona	27	42	
Estradiol	25	40	
Estriol	12	25	
Etinilestradiol	27	50	

Descrição do	Percentual de Remoção (%)		
Contaminante	Mínimo	Máximo	
Bisfenol - A	Não Avaliado	Não Avaliado	
Diclofenaco	25	95	
Estrona	Não Avaliado	Não Avaliado	
Estradiol	30	90	
Estriol	45	70	
Etinilestradiol	85	90	

Descrição do	Percentual de Remoção (%)		
Contaminante	Minimo	Máximo	
Bisfenol - A	45	70	
Diclofenaco	98	98	
Estrona	85	98	
Estradiol	82	98	
Estriol	30	35	
Etinilestradiol	80	95	

PROCESSO DE ADSORÇÃO - CAG				
Descrição do	Percentual de Remoção (%)			
Contaminante	Minimo	Máximo		
Bisfenol - A	Não Avaliado	Não Avaliado		
Diclofenaco	85	98		
Estrona	Não Avaliado	Não Avaliado		
Estradiol	95	100		
Estriol	Não Avaliado	Não Avaliado		
Etinilestradiol	90	90		

Descrição do	Percentual de Remoção (%)		Descrição do	Percentual de Remoção (%)	
Contaminante	Mínimo	Máximo	Contaminante	Minimo	Máximo
Bisfenol - A	70	98	Bisfenol - A	55	100
Diclofenaco	Não Avaliado	Não Avaliado	Diclofenaco	100	100
Estrona	98	98	Estrona	90	90
Estradiol	80	100	Estradiol	90	90
Estriol	75	75	Estriol	55	90
Etinilestradiol	95	100	Etinilestradiol	90	90

O que se pode constatar com base nos dados do estudo de Lima *et al.* (2016) é que as técnicas que apresentam maior eficiência são os processos de adsorção com uso de carvão ativado pulverizado (CAP) ou granular (CAG) que obtiveram resultados de remoção em torno de 90% para a maioria dos fármacos analisados. Outro destaque deve ser dado também aos processos oxidativos avançados (POA) e separação por membrana com resultados bastante significativos, embora o custo de implantação seja desfavorável em comparação com os processos de uso do carvão ativado.

CONSIDERAÇÕES FINAIS

Este artigo propôs uma revisão acerca dos fármacos na água e como é realizada sua remoção, bem como, a legislação que engloba essa temática.

Pode-se concluir que os resíduos farmacológicos presentes em águas residuais, superficiais e potáveis são uma preocupação dos pesquisadores, principalmente pelo fato de ser desconhecido o real perigo que os medicamentos podem acarretar aos organismos aquáticos.

São discutidos na literatura técnicas de remoção dos fármacos na água, no entanto não há uma regulamentação referente a estabelecer concentrações mínimas, desta forma quanto mais à população consumir fármacos, mais resíduos de medicamentos e seus metabólitos estarão presentes no meio ambiente.

REFERÊNCIAS

- Abd Rahim, M., Wan Ibrahim, W. A., Ramli, Z., Sanagi, M. M., & Aboul-Enein, H. Y. (2016). New Sol–Gel Hybrid Material in Solid Phase Extraction Combined with Liquid Chromatography for the Determination of Non-steroidal Anti-inflammatory Drugs in Water Samples. *Chromatographia*, 79(7–8), 421–429.
- Abd Wahib, S. M., Wan Ibrahim, W. A., Sanagi, M. M., Kamboh, M. A., & Abdul Keyon, A. S. (2018). Magnetic sporopollenin-cyanopropyltriethoxysilane-dispersive micro-solid phase extraction coupled with high performance liquid chromatography for the determination of selected non-steroidal anti-inflammatory drugs in water samples. *Journal of Chromatography A*, 1532, 50–57.
- Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. *Annual Review of Ecology, Evolution, and Systematics*, 35(2004), pp. 257-284.
- Américo-Pinheiro, J.H.P., Isique, W.D., Torres, N.H., Machado, A. A., Carvalho, S. L. de, Valério Filho, W. V. & Ferreira, L. F. R. (2017). Ocorrência de diclofenaco e naproxeno em água superficial no município de Três Lagoas (MS) e a influência da temperatura da água na detecção desses anti-inflamatórios. *Engenharia Sanitaria e Ambiental*, 22(3), 429-435.
- Aquino, S. F. de, Brandt, E. M. F. & Chernicharo, C. A. de L. (2013). Remoção de fármacos e desreguladores endócrinos em estações de tratamento de esgoto: revisão da literatura. *Engenharia Sanitaria e Ambiental*, 18(3), 187-204.
- Ascar, L., Ahumada, I., López, A., Quintanilla, F. & Leiva, K. (2013). Nonsteroidal anti-inflammatory drug determination in water samples by HPLC-DAD under isocratic conditions. *Journal of the Brazilian Chemical Society*, 24(7), 1160-1166.
- Ashfaq, M., Nawaz Khan, K., Saif Ur Rehman, M. (2017). Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. *Ecotoxicology and Environmental Safety*, 136, pp. 31–9.
- Baranowska, I., & Kowalski, B. (2010). The development of SPE procedures and an UHPLC method for the simultaneous determination of ten drugs in water samples. *Water, Air, and Soil Pollution*, 211(1-4), 417-425.
- Barcellos, C; Quitério, L. A. (2006) Vigilância ambiental em saúde e sua implantação no Sistema Único de Saúde. Revista Saúde Pública, 40(1), p. 170-171.
- Bila, D. M. & Dezotti, M. (2003). Fármacos no meio ambiente. Quim. Nova, 26, 523-530.
- Bijlsma, L., Sancho, J. V, Pitarch, E., Ibáñez, M., & Hernández, F. (2009). Simultaneous ultra-high-pressure liquid chromatography-tandem mass spectrometry determination of amphetamine and amphetamine-like stimulants, cocaine and its metabolites, and a cannabis metabolite in surface water and urban wastewater. *Journal of Chromatography A*, 1216(15), 3078–3089.
- Blank, D.M.P & Brauner, M C.C. (2009). Medicalização da Saúde: Biomercado, Justiça e Responsabilidade Social. *JURIS*, 14: 7-24.
- Boix, C., Ibáñez, M., Sancho, J. V, Rambla, J., Aranda, J. L., Ballester, S., & Hernández, F. (2015). Fast determination of 40 drugs in water using large volume direct injection liquid chromatography-tandem mass spectrometry. Talanta, *131*, 719–727.
- Borges, R. M., Minillo, A., Lemos, E. G. de M., Prado, H. F. Alves & Tangerino, E. P. (2016). Uso de filtros de carvão ativado granular associado a microrganismos para remoção de fármacos no tratamento de água de abastecimento. *Engenharia Sanitaria e Ambiental*, 21(4), 709-720. Epub 05 de setembro de 2016.
- Borrely, S. I., Caminada, S. M. L., Ponezi, A. N., Santos, D. R. D., & Silva, V. H. O. (2012). Contaminação das águas por resíduos de medicamentos: ênfase ao cloridrato de fluoxetina. *Mundo da Saúde*, 556-563.

- Brasil, Ministério do Meio Ambiente (2005). **Resolução nº357 do Conselho Nacional de Meio Ambiente de 18 de março de 2005**. Classificação dos corpos d'água e diretrizes ambientais para o seu enquadramento. Brasília.
- Capobianco, J. P. R. (2007). Importância da água. Mundo vestibular. Recuperado em 01 de dezembro de 2018 em: https://www.mundovestibular.com.br/articles/569/1/importancia-da-agua/Paacutegina1.html
- Carapeto C. (1999). Poluição das Águas: Causas e Efeitos. Universidade Aberta.
- Cardoso, L. V., Tomasini, D., Sampaio, M. R. F., Caldas, S. S., Kleemann, N., Primel, E. G., & Gonçalves, F. F. (2011). Optimization and validation of a method using SPE and LC-APCI-MS/MS for determination of pharmaceuticals in surface and public supply water. Journal of the Brazilian Chemical Society, 22(10), 1944-1952.
- Costa I. L. Jr.; Pletsch, A. L.; & Torres, Y. R. (2014). Ocorrência de Fármacos Antidepressivos no Meio Ambiente. Revisão. *Revista Virtual de Química*, 6(5), 1408-1431.
- Costa, A. S. e Costa, M.S., (2011). Poluentes Farmacêuticos: a poluição silenciosa. Jornal Eletrônica Faculdades Integradas Vianna Júnior. Ano III. Edição I, pp.95-107.
- Dawod, M., Breadmore, M. C., Guijt, R. M., & Haddad, P. R. (2008). Electrokinetic supercharging for on-line preconcentration of seven non-steroidal anti-inflammatory drugs in water samples. *Journal of Chromatography A*, 1189(1–2), 278–284.
- Einsle, T., Paschke, H., Bruns, K., Schrader, S., Popp, P., & Moeder, M. (2006). Membrane-assisted liquid-liquid extraction coupled with gas chromatography-mass spectrometry for determination of selected polycyclic musk compounds and drugs in water samples. *Journal of Chromatography A*, 1124(1–2), 196–204.
- Erba, C. M., Tangerino, E. P., Carvalho, S. L. de & Isique, W. D. (2012). Remoção de diclofenaco, ibuprofeno, naproxeno e paracetamol em filtro ecológico seguido por filtro de carvão granular biologicamente ativado. *Engenharia Sanitaria e Ambiental, 17*(2), 137-142. Es'haghi, Z. (2009). Determination of widely used non-steroidal anti-inflammatory drugs in water samples by in situ derivatization, continuous hollow fiber liquid-phase microextraction and gas chromatography-flame ionization detector. *Analytica Chimica Acta*, 641(1–2), 83–88.
- Faria, E., Lima, D. R. de S., Xavier, L. P. dos S., Aquino, S. F. de, Afonso, R. J. de C. F., Chernicharo, C. A. de L. & Gomes, R. P. (2015). Uso de fotorreatores UV para a remoção de diclofenaco, bezafibrato e etinilestradiol de esgoto tratado em sistema UASB-FBP. *Engenharia Sanitaria e Ambiental*, 20(3), 493-502.
- Fedorova, G., Grabic, R., Nyhlen, J., Järhult, J. D., & Söderström, H. (2016). Fate of three anti-influenza drugs during ozonation of wastewater effluents degradation and formation of transformation products. *Chemosphere*, 150, 723–730.
- Ferreira, R. C., Lima, H. H. C., Couto Junior, O. M., Arroyo, P. A., Carvalho, K. Q. & Barros, M. A. S. D. (2018). Utilização de carvão ativado de dendê in natura e funcionalizado em meio ácido na adsorção de paracetamol. Matéria (Rio de Janeiro), 23(1), e-11968. Epub 05 de março de 2018.
- Frade, V. M. F., Dias, M., Teixeira, A. C. S. C., Palma, M. S. A. (2014) Environmental contamination by fluoroquinolones. Braz. J. Pharm. Sci. 50(1), 41-54.
- Freitas, M. B.; Freitas, C. M. (2005). A vigilância da qualidade da água para consumo humano desafios e perspectivas para o Sistema Único de Saúde. Ciência e Saúde Coletiva, 10(4), 993-1004.
- Graciani, F. S.; Ferreira, G. L. B. V.; (2014). **Descarte de medicamentos: Panorama da logística reversa no Brasil.** Recuperado em 10 de novembro de 2018 de http://www.revistaespacios.com/a14v35n05/14350411.html.

- Hellström, G., Klaminder, J., Finn, F., Persson, L., Alanärä, A., Jonsson, M., Fick, J., et al. (2016). Gabaergic anxiolytic drug in water increases migration behaviour in salmon. *Nature Communications*, 7.
- Huerta-Fontela, M., Galceran, M. T., & Ventura, F. (2007). Ultraperformance liquid chromatography tandem mass spectrometry analysis of stimulatory drugs of abuse in wastewater and surface waters. *Analytical Chemistry*, 79(10), 3821–3829.
- Kornis, G.E.M., Braga, M.H. & Paula, P.A.B. de (2014). Transformações recentes da indústria farmacêutica: um exame da experiência mundial e brasileira no século XXI. *Physis: Revista de Saúde Coletiva*, 24(3), 885-908.
- Langanke, R. Conservação para Ensino Médio: Eutrofização. Recuperado em 07 de novembro de 2018 de http://ecologia.ib.usp.br/lepac/conservação/ensino/des eutro.htm#.
- Li, N., Chen, J., & Shi, Y.-P. (2019). Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic sorbent for the separation of polar non-steroidal anti-inflammatory drugs in waters. *Talanta*, 191, 526–534.
- Lima, D.R.S., Tonucci, M.C., Libânio, M. & Aquino, S.F. (2016). Fármacos e desreguladores endócrinos em águas brasileiras: ocorrência e técnicas de remoção. *Engenharia Sanitaria e Ambiental*, 22(6), 1043-1054.
- Macià, A., Borrull, F., Calull, M., & Aguilar, C. (2006). Analysis of nonsteroidal anti-inflammatory drugs in water samples using microemulsion electrokinetic capillary chromatography under pH-suppressed electroosmotic flow with an on-column preconcentration technique. *Chromatographia*, 63(3–4), 149–154.
- Martín, J., Camacho-Muñoz, D., Santos, J. L., Aparicio, I., & Alonso, E. (2011). Simultaneous determination of a selected group of cytostatic drugs in water using high-performance liquid chromatography-triple-quadrupole mass spectrometry. *Journal of Separation Science*, *34*(22), 3166–3177.
- Menezes, J. P. C.; Bertossi, A. P. A.; Santos, A. R.; Neves, M. A. (2014). Correlation between land use and groundwater quality. *Engenharia Sanitaria e Ambiental*, v. 19. p. 173-186.
- Möder, M., Braun, P., Lange, F., Schrader, S., & Lorenz, W. (2007). Determination of endocrine disrupting compounds and acidic drugs in water by coupling of derivatization, gas chromatography and negative-chemical ionization mass spectrometry. *Clean Soil, Air, Water*, 35(5), 444–451.
- Molinari, R., Argurio, P., & Poerio, T. (2009). Flux enhancement of stagnant sandwich compared to supported liquid membrane systems in the removal of Gemfibrozil from waters. *Journal of Membrane Science*, 340(1–2), 26–34.
- Mutavdžić, D., Babić, S., Ašperger, D., Horvat, A. J. M., & Kaštelan-Macan, M. (2006). Comparison of different solid-phase extraction materials for sample preparation in the analysis of veterinary drugs in water samples. *Journal of Planar Chromatography Modern TLC*, 19(112), 454–462.
- Narvaez V, J. F., & Jimenez C, C. (2012). Pharmaceutical products in the environment: Sources, effects and risks | Productos farmacéuticos en el ambiente: Fuentes, efectos y riesgos. *Vitae*, 19(1), 93–108.
- O'Neill, J., Holland, A., Light, A. (2008). Environmental Values. Recuperado em 11 de novembro de 2018 de https://www.researchgate.net/publication/238414295 _Environmental_Values_-_By_John_O'Neill_Alan_Holland_and_Andrew_Light.
- Organização Mundial da Saude OMS. (2017). Temas da Saúde. https://www.paho.org/bra/index.php?option=com_content&view=article&id=5458:oms-2-1-bilhoes-de-pessoas-nao-tem-agua-potavel-em-casa-e-mais-do-dobro-nao-dispoem-de-saneamento-seguro&Itemid=839

- Ortiz-Prado, E., Galarza, C., León, C.F. & Ponce, J. (2014). Acceso a medicamentos y situación del mercado farmacéutico en Ecuador. *Rev Panam Salud Publica*, 36(1), 57-62.
- Paiva, F. V., Souza, N. C. & Haandel, A. C. V. (2011). Identificação de compostos orgânicos e farmacêuticos em esgoto hospitalar utilizando cromatografia gasosa acoplada a espectrometria de massa. Engenharia Sanitaria e Ambiental, 16(1), 37-44.
- Pinto, L. H., Cardozo, G., Soares, J. C. & Erzinger, G. S. (2016). Toxicidade ambiental de efluentes advindo de diferentes laboratórios de uma farmácia magistral. *Revista Ambiente & Água, 11*(4), 819-832.
- Quero-Pastor, M., Valenzuela, A., Quiroga, J. M., & Acevedo, A. (2014). Degradation of drugs in water with advanced oxidation processes and ozone. *Journal of Environmental Management*, 137, 197–203.
- Raich-Montiu, J., Folch, J., Compañó, R., Granados, M., & Prat, M. D. (2007). Analysis of trace levels of sulfonamides in surface water and soil samples by liquid chromatography-fluorescence. *Journal of Chromatography A*, 1172(2), 186–193.
- Sarafraz-Yazdi, A., Amiri, A., Rounaghi, G., & Eshtiagh-Hosseini, H. (2012). Determination of non-steroidal anti-inflammatory drugs in water samples by solid-phase microextraction based sol-gel technique using poly (ethylene glycol) grafted multi-walled carbon nanotubes coated fiber. *Analytica Chimica Acta*, 720, 134–141.
- Sarafraz-Yazdi, A., Assadi, H., Es'Haghi, Z., & Danesh, N. M. (2012). Pre-concentration of non-steroidal anti-inflammatory drugs in water using dispersive liquid-liquid and single-drop microextraction with high-performance liquid chromatography. *Journal of Separation Science*, *35*(18), 2476–2483.
- Shanmugam, G., Sampath, S., Selvaraj, K. K. (2014) Non-steroidal anti-inflammatory drugs in Indian rivers. *Environmental Science and Pollution Research*, v. 21, pp. 921–31.
- Silva, J. P. S. (2006). Impactos ambientais causados por mineração. Revista Espaço da Sofhia. N. 8 ano 1.
- Sindicato da Indústria de Produtos Farmacêuticos no Estado de São Paulo Sindusfarma (2018). Indicadores econômicos. Recuperado em 11 de novembro de 2018, de http://sindusfarma.org.br/cadastro/index.php/site/ap_indicadores.
- Souza, B.P., Lima, D. R. S., Aquino, S. F., Quaresma, A. V., Baêta, B. E. L. & Libânio, M. (2018). Oxidação de fármacos por cloro e formação de subprodutos em amostras aquosas em escala de bancada. Engenharia Sanitaria e Ambiental, 23(2), 207-216.
- Tanwar, S., Di Carro, M., & Magi, E. (2015). Innovative sampling and extraction methods for the determination of nonsteroidal anti-inflammatory drugs in water. Journal of Pharmaceutical and Biomedical Analysis, 106, 100–106.
- Tran, N.H., Li, J., Hu, J., Ong, S.L. (2014) Occurrence and suitability of pharmaceuticals and personal care products as molecular markers for raw wastewater contamination in surface water and groundwater. Environmental Science and Pollution Research, v.21, n.6, pp.4727–4740.
- Veiga-Gómez, M., Nebot, C., Franco, C. M., Miranda, J. M., Vázquez, B., & Cepeda, A. (2017). Identification and quantification of 12 pharmaceuticals in water collected from milking parlors: Food safety implications. Journal of Dairy Science, 100(5), 3373–3383.
- Wang, Y., Zhang, Y., Cui, J., Li, S., Yuan, M., Wang, T., Hu, Q., et al. (2018). Fabrication and characterization of metal organic frameworks/ polyvinyl alcohol cryogel and their application in extraction of non-steroidal anti-inflammatory drugs in water samples. Analytica Chimica Acta, 1022, 45–52.
- Wong, C. S., & MacLeod, S. L. (2009). JEM Spotlight: Recent advances in analysis of pharmaceuticals in the aquatic environment. Journal of Environmental Monitoring, 11(5), 923–936.