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Introdução
The Amazon biome plays an important role in the climate system, with relevance at regional and global scales. Fire occurrences, related to both natural and 
anthropogenic activities, are relevant disturbances in the Legal Amazon, with significant effects. Changes in the patterns of fire occurrence in the Amazon 
region have been widely reported in the literature and are related with a variety of factors, including dry conditions, deforestation, agricultural expansion, 
climate changes, and climatic anomalies such as El Ninõ events.
Problema de Pesquisa e Objetivo
The purpose of this paper is to analyze the existence of changes in the patterns of the fire occurrence in the Legal Amazon, within the spatio-temporal point 
process framework. To do this, we propose a novel methodology to extent the trend-cycle decomposition in spatio-temporal models to spatio-temporal point 
pattern data, by proposing to use a dynamic representation of a Log Gaussian Cox process (LGCP) where the intensity function is modeled through the 
decomposition of components into trend, seasonality, cycles, covariates and spatial effects.
Fundamentação Teórica
The LGCP is a particular case of the Cox process, where the log-intensity function is a Gaussian field. Due to the stochastic property of the LGCP, fitting this 
model is often computationally expensive. In this sense, to perform the estimation in a computationally effective way, we use the stochastic partial differential 
equation approach to transform the initial Gaussian field to a Gaussian Markov Random Field, which is defined by sparse matrices. Furthermore, the resulting 
Bayesian hierarchical model fits within the integrated nested Laplace approximations framework (Rue et al., 2009).
Metodologia
To perform inference procedures, we proposed a structural decomposition to spatio-temporal point pattern data. In particular, we proposed to use a dynamic 
representation of a Log Gaussian Cox process where the intensity function was modeled through the decomposition of components into trend, seasonality, 
cycles, covariates and spatial effects. This useful formulation was able to capture permanent changes in the fire occurrence and also, to identify seasonal and 
cyclic effects (Laurini, 2019; Valente e Laurini, 2020).
Análise dos Resultados
The results show that long-term movements of fire activity dropped considerably between 2006 and 2012, which suggest that conservation regulations and/or 
market conditions in the mid-2000s were effective in reducing the fire events. Also, our model captured an increase in the trend component between 2013 and 
2016, and after 2018, which may be explained by localized drivers associated with political measures that encourage the expansion of agriculture and 
livestock.
Conclusão
The estimated components suggested relevant changes in the patterns of the fire activity in the Legal Amazon. In particular, it is possible to observe how the 
long-term component is affected by conservation regulations and/or market conditions, i.e., the obtained evidences suggest that the changes in the fire 
ocorrences are mostly related to human-induced activities. Furthermore, the seasonal component provided evidence that fire events in the Legal Amazon has 
become more consistent throughout the year, suggesting the increase of fuel management practices occurring during the nonfire season.
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A SPATIO-TEMPORAL APPROACH TO ESTIMATE CHANGES IN THE PATTERNS OF
FIRE OCCURRENCE IN THE LEGAL AMAZON

1. Introduction. The Amazon biome is one of Earth’s greatest biological treasures, containing more
than half of the world’s rainforests and a quarter of all terrestrial species (Malhi et al., 2008). The Amazon
rainforest also provides an environmental service by storing carbon, in both biomass and soils, and thus
reducing the global warming (Fearnside, 2012). Plus, evaporation and precipitation over Amazonia play
an important role in the global atmospheric circulation, with effects on the climate across South America
and North Hemisphere (Gedney and Valdes, 2000; Werth and Avissar, 2002). Although the Amazon rain-
forest is shared by nine countries, about 60 percent of the Amazon Basin is in Brazil, where the political-
administrative area called Legal Amazon encompasses nine Brazilian states, corresponding to 61% of the
national territory.

Fire occurrences, related to both natural and anthropogenic activity, are relevant disturbances in the Ama-
zon region, affecting the atmosphere composition (Crutzen and Andreae, 1990; Longo et al., 2009), forest
structure and composition (Cochrane and Schulze, 1999), and the cycle of carbon. In general, fire occur-
rence in the Amazon rainforest is related to land use, land cover, and climate patterns. In terms of total forest
loss and fire occurrence, most of the changes in the land cover and human activities are concentrated along
with the southern and eastern extent of the Brazilian Amazon region, called “arc of deforestation” (Morton
et al., 2006), which is related to the presence of roads and human accessibility (Siegert et al., 2001; Serra
et al., 2014). The expansion of roads and agriculture in the Legal Amazon began in the early 1970s when the
Transamazon Highway was built. The construction of roads was accompanied by high rates of deforestation.
For instance, between 1980 and 1990, the rates of deforestation in the Legal Amazon increased considerably,
where approximately 225000km2 of forest were cleared. In the same period, the extension of paved roads
increased by more than 100% and unpaved roads increased by approximately 460% (Ferraz, 2001).

From an economic standpoint, the fire occurrence in the Amazon region generates a great variety of
costs with private and social consequences. In rural properties, the main losses occur when burning gets
out of control and spread into pasture and forest areas. Also, losses related to fire occurrence may reach
social proportions, through the release of carbon into the atmosphere, affecting global climate patterns, and
provoking adverse health outcomes which impose direct and indirect costs on society, such as medical costs,
labor loss, and utility loss De Mendonça et al. (2004, 2006).

Many factors may change the patterns of fire occurrence in the Amazon region. Previous studies have
reported the impact of dry conditions on forest fire risk (Nepstad et al., 2004; Aragão et al., 2007), and the
effects of deforestation and fragmentation on regional climate, which have shown a significant increase in
the mean surface temperature, and a decrease in the annual evapotranspiration and precipitation, which can
further increase fire danger (Nobre et al., 1991; Costa et al., 2007). Changes in the patterns of forest fire
has also been reported to be related to agricultural expansion (Morton et al., 2008), as agriculture is the
main driver of deforestation and forest degradation (Food and of The United Nations, 2020), and the fire is
a common and inexpensive tool used by Brazilian farmers to expand agricultural frontiers and to maintain
and renew pastures. Also, due to climatic change, circulation shifts and increased anomalies such as El Niño
events exacerbate extreme dry seasons in Amazonia (Marengo, 2004; Li et al., 2006; Marengo et al., 2008),
changing the vegetation structure, potentially transforming the forest from highly resistant to fire ignition
to extensively flammable (Cochrane and Barber, 2009), eventually leading to future increases burning fre-
quency. Furthermore, there is evidence that forest fires create positive feedbacks in fire susceptibility, fuel
loading, and fire intensity whereby recurrent fires become more likely and severe (Cochrane et al., 1999;
Siegert et al., 2001).

One way to verify the existence of changes in the patterns of the climate-related events, such as fire
occurrence, is through the estimation of permanent and periodic components (Bloomfield, 1992; Proietti
and Hillebrand, 2017; Laurini, 2019), using statistical tools to decompose the observed temporal variability
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into trend, seasonal and cycle components. However, the existing methods used to extract trends, seasonal,
and cycle components face some problems to perform inference procedures on climate-related issues. First,
these models are not fully adapted to the dimensionality of data sources used in climatology. Also, it does
not take into account the spatial heterogeneity of climate effects. An alternative way to circumvent the
aforementioned problems is a method that combines elements of structural time series decomposition with
spatio-temporal models with continuous spatial random effects, which can be thought as a process of de-
composing geostatistical time series into a sum of trend, seasonal and cycle components and the effect of
additional covariates Laurini (2019); Valente and Laurini (2020).

The purpose of this paper is to analyze the existence of changes in the patterns of the fire occurrence
in the Legal Amazon, within the spatio-temporal point process framework. To do this, we propose a novel
methodology to extent the trend-cycle decomposition in spatio-temporal models to spatio-temporal point
pattern data, by proposing to use a dynamic representation of a Log Gaussian Cox process (LGCP) where
the intensity function is modeled through the decomposition of components into trend, seasonality, cycles,
covariates and spatial effects (Laurini, 2019; Valente and Laurini, 2020). This is a useful formulation to
identify possible changes in the intensity of occurrence over time, such as permanent changes in the fire
occurrence, and to capture seasonal and cyclical effects.

The LGCP is a particular case of the Cox process, where the log-intensity function is a Gaussian random
field. Due to the stochastic property of the LGCP, fitting this model is often computationally expensive.
In this sense, to perform the estimation in a computationally effective way, we use the stochastic partial
differential equation (SPDE) approach (Lindgren et al., 2011) to transform the initial Gaussian random field
(GRF) to a Gaussian Markov Random Field (GMRF), which is defined by sparse matrices. Furthermore,
the resulting Bayesian hierarchical model fits within the integrated nested Laplace approximations (INLA)
framework (Rue et al., 2009), also providing significant computational improvements.

We present here, the results of analyzing data for fire occurrence in the Legal Amazon, from January 2003
to February 2020. Our database contains daily fire reports from Moderate-Resolution Imaging Spectrora-
diometer (MODIS), with information such as spatial coordinates and temporal instant of fire events. Also,
we include explanatory variables to control the main fixed effect related to climatic conditions and the use
of the soil in agricultural activities. Our results show that long-term movements of fire occurrence dropped
considerably between 2006 and 2012, which suggest that conservation regulations and/or market conditions
in the mid-2000s were effective in reducing the deforestation rates and, consequently, decreasing the fire
occurrence. Also, the reversal of the deforestation decline observed between 2006 and 2012 was capture by
our model, showing an increase in the long-term behavior between 2013 and 2016, which may be explained
by market mechanisms, and localized drivers such as population growth, investments, and roads, associated
with reducing restrictions of Brazil’s Forest Code. Also, the deforestation surge in 2016 was accompanied
by the political uncertainty surrounding the president Dilma Rousseff’s official impeachment proceeding,
which offered opportunities to approve legislative initiatives to remove environmental restrictions. Further-
more, our model was able to capture an increase in the trend component after 2018, which may be linked
to recent Brazilian political change. Furthermore, the estimated seasonal component provided evidence that
fire occurrence in the Legal Amazon has become more consistent throughout the year, suggesting the in-
crease of fuel management practices occurring during the nonfire season, which is related to the expansion
of agricultural production.

Our paper proceeds as follows. In section 2 we present the proposed method. Section 3 presents our data.
In section 4 we present the results. We conclude in Section 5

2. Methods. Among models for the spatial point process, the Poisson process is the most fundamental
structure. However, its application is limited due to its simplistic nature (Teng et al., 2017), even if one
assumes a non-homogeneous distribution in space through a function of deterministic intensity. The lim-
itations are related to the lack of possible sources of uncertainty and the fact that the Poisson process is
conditionally independent. A related, but more flexible structure, is the Log Gaussian Cox process, a hierar-
chical structure where at the first level the process is assumed Poisson conditional on the intensity function,
and at the second level, the log of the intensity function is assumed to be a Gaussian field (Teng et al., 2017).
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Given the doubly-stochastic property of the LGCP, fitting this model is a computational challenge. Within
the Bayesian framework, the conditional autoregressive approach is a possible alternative to perform infer-
ence procedure and may be fitted using the INLA (Illian et al., 2010). However, this approach is based on
regular lattices over the observation window (Simpson et al., 2016), which could be highly inefficient since
it requires to construct a much fine grid. For spatial models that combine a GRF with a Matérn correlation
structure, the stochastic partial differential equations approach is a way to bypass the problem of inefficiency
in the estimation under INLA method. The key of the approach is to use the fact that a GRF with Matérn
covariance function is a solution to a SPDE and then the SPDE representation is used in conjunction with
basis representation to construct a discrete approximation of the continuous field over the vertices of a 2-
dimensional mesh covering the spatial domain (Simpson et al., 2016), i.e., the idea of the SPDE approach
is to approximate the initial Gaussian field to a Gaussian Markov random field. One of the main advantages
of this approach is the fact that GMRFs are defined by sparse matrices, allowing computationally effective
methods.

In this paper we propose a spatio-temporal formulation of point processes with stochastic intensity, using
a decomposition of the intensity function into components that vary in time and space. Specifically, we
propose to use a LGCP structure, where the intensity function is decomposed into trend, seasonal, and
cycle components together with spatial random effects, which allows us to identify permanent changes, and
cyclical and seasonal effects. To perform inference procedure, we use the SPDE approach, allowing the use
of Bayesian inference procedures based on INLA.

We first give a brief description of the SPDE approach, and a detailed discussion can be found in (Lindgren
et al., 2011; Simpson et al., 2016). Spatio-temporal data can be represented as realizations of a stochastic
process indexed by a space and a time dimension

(1) Y (s, t) = {y(s, t)|(s, t) ∈D× T ∈R2 ×R}

where D is a subset of R2, T is a subset of R, s denotes a spatial coordinate and t denotes a time index.
Using this structure, we can represent a spatio-temporal LGCP modelled as

Y (s, t) = Poisson(|e(s, t)|exp(λ(s, t)),

λ(s, t) = z(s, t)β + ξ(s, t)

ξ(s, t) = Φξ(s, t− 1) + ω(s, t)(2)

where Y (s, t) is the number of occurrences in a region s and in time t, e(s, t) is the exposure offset for
the region s, z(s, t) is a set of covariates observed in the location s and period t, and ξ(s, t) are the spatial
random effects represented by the Gaussian process ω(s, t) continuously projected in space and given by

(3) Cov(ω(s, t)ω(s
′, t′)) =

{
0 if t 6= t′

σ2C(h) if t= t′
for s 6= s′

where C(h) is a covariance function of the Matérn class, which can be written as

(4) C(h) =
21−ν

Γ(ν)
(κ||h||)νKν(κ||h||)

where h= ||s− s′|| is the Euclidean distance between locations s and s′, κ > 0 is a spatial scale parameter,
ν > 0 is the smoothness parameter andKν is a modified Bessel function. The marginal variance σ2 is defined
by:

(5) σ2 =
Γ(ν)

4πκ2ντ2Γ(ν + d
2)
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where τ is a scaling parameter and d is the space dimension. Additionally, we adopt a parameterization in
terms of log τ and logκ for the covariance function (Lindgren et al., 2011):

log τ =
1

2
log

(
Γ(ν)

Γ(α)(4π)d/2

)
− logσ− ν logρ

logκ=
log(8ν)

2
− logρ(6)

where ρ= (8ν)1/2

κ . This representation is advantageous since, conditional on the value of ν, it is necessary
to estimate only two parameters.

Considering a bounded region Ω ∈ R2, it follows that the likelihood for an LGCP associated with data
Y = {si ∈Ω : i= 1, . . . , n; t= 1, . . . , T} is of the form

(7) π(Y |λ) = exp

(
|Ω| −

∫
Ω
λ(s, t)ds

) T∏
t=1

nt∏
i=1

λ(si, t).

Due to the doubly-stochastic property of the intensity function, the likelihood in (7) is analytically in-
tractable. Since the term ω(s, t) corresponds to a GF with Matérn covariance, it is possible to use the SPDE
approach to approximate the initial GF to a GMRF. The first main important result for the SPDE approach,
is the fact that a GF x(s) with the Matérn covariance function is a stationary solution to the linear fractional
SPDE (Whittle, 1954; Lindgren et al., 2011)

(8) (κ−∆)α/2x(s) =W (s), s ∈Rd, α= ν + d/2, κ > 0, ν > 0

where ∆ =
∑d

i=1
∂2

∂s2i
is the Laplacian operator and W (s) is a spatial white noise. Therefore, to find a

GMRF approximation of a GF, it is necessary to find the stochastic weak solution of a SPDE, which can
be constructed through Finite Method Elements (FEM) (Lindgren et al., 2011). Thus, the approximation of
SPDE solution is given by

(9) ω(s, t)≈ ω̃(s, t) =

n∑
j=1

wjϕj(s, t)

where n is the number of vertices of the triangulation, {wj}nj=1 are the weights with Gaussian distribution
and {ϕj}nj=1 are the basis functions defined for each node on the mesh. In summary, the idea is to calculate
the weights {wj}, which determine the values of the field at the vertices, while the values inside the triangles
are determined by linear interpolation (Lindgren et al., 2011). Here, the basis functions are chosen to be
piecewise linear on each triangle:

(10) ϕl(s, t) =

{
1 at vertex l
0 elsewhere

The stochastic weak solution of (8) is found by requiring

(11) {〈φ, (κ2 −∆)α/2ω〉}Ω
d
= {〈φ,W 〉}Ω,

where {φi(s), i = 1, . . . ,m} are test functions and “ d=” denotes equality in distribution. Replacing (9) in
(11) gives us

(12) {〈φi, (κ2 −∆)α/2ϕj〉}Ωw
d
= {〈φi,W 〉}Ω,

for i = 1, . . . ,m, where m is the number of test functions. The finite dimensional solution is obtained by
finding the distribution for the Gaussian weights in equation (9) that fulfils (12) for only a specific set
of test functions, with m = n. When φk = (κ2 = ∆)1/2ϕk for α = 1 and φk = ϕk for α = 2, these two
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approximations are denoted the least squares and the Galerkin solution, respectively. Choosing α = 2 and
φk = ϕk yields

(13)
(
κ2{〈ϕi,ϕj〉}+ {〈ϕi,−∆ϕj〉}

)
w

d
= {〈ϕi,W 〉}.

Define the n× n matrices, C and G as

Cij = 〈ϕi,ϕj〉

Gij = 〈∇ϕi,∇ϕj〉,(14)

then a weak solution to (8) is given by (9), where

(15) (κ2C+G)w∼N(0,C)

and the precision of the weights, w, is

(16) Qα=2 = (κ2C+G)TC−1(κ2C+G).

Although Gij and Cij are sparse matrices, C−1 is not sparse. The solution is to replace Cij = 〈ϕi,ϕj〉
by the diagonal matrix Cii = 〈ϕi,1〉, that yields a Markov approximation. Therefore, w is a GMRF with
precision matrix defined by (16).

Replacing the GF ω(s, t) by the GMRF approximation ω̃(s, t) in equation (2), and approximating the
integral in (7) by a quadrature rule, results that the approximate likelihood consists of (n+ nt)T indepen-
dent Poisson random variables, where n is the number of vertices and nt is the number of observed point
processes. By obtaining the LGCP likelihood approximation, it is possible to perform inference procedures
through the INLA algorithm, which provides accurate and efficient approximations on Bayesian hierarchical
models that can be represented as latent Gaussian models. For reasons of space, we do not detail the INLA
method here, which can be found in (Rue et al., 2009).

The dynamic formulation proposed in this paper is a generalization of the formulation given in Equation
(2). In this case, we include the components µt, st and ct as follows:

Y (s, t) = Poisson(|e(s, t)|exp(λ(s, t)),

λ(s, t) = µt + st + ct + z(s, t)β + ξ(s, t)

µt = µt−1 + ηµ

st = st−1 + st−2 + . . .+ st−m + ηs

ct = θ1ct−1 + θ2ct−2 + ηc

ξ(s, t) = Φξ(s, t− 1) + ω(s, t)(17)

where µt is the long term trend modeled as a first-order random walk (RW1), also known as the local-level
model. This component is closely related to changes in the permanent patterns of fire occurrence in the
Legal Amazon, and it can be seen as the accumulation of all shocks that occurred in the past with non-
transitory effects. The st represents the seasonal components, which is based on a formulation of mean
effects by period. The ct is a cycle component represented by an second-order autoregressive process with
possible complex roots, which allows to capture cyclic patterns if the roots are complex numbers (Laurini,
2019). The ηµ, ηc and ηs are nonspatial independent innovations with ηµ ∼N(0, σ2

ηµ), ηc ∼N(0, σ2
ηc) and

ηs ∼ N(0, σ2
ηs). In all estimation procedures, we use default priors for the SPDE model in the R-INLA

package implementation, which is available upon request from the authors.

3. Empirical Analysis. This section of the paper reports empirical analysis of the above method to the
study of the changes in the patterns of fire occurrence in Legal Amazon between 2003 and 2020. The data
sources are described below, before reporting the results of the proposed analysis.
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3.1. Data. We use in this paper daily data of fire occurrence in the Legal Amazon from MODIS Thermal
Anomalies/Fires between January 2003 and July 2020, which provides information such as fire occurrences
(day/night), fire location, the logical criteria for the fire selection, and detection confidence. In order to
provide better interpretations of the results, we use a quarterly aggregation of the daily data. In addition,
from the computational aspect, the use of a very high frequency could lead to numerical problems in the
estimation and inference processes since the dimension of the spatio-temporal covariance matrix is given by
the Kronecker product between the time and spatial dimensions.

To illustrate, Figure 1 provides the number of fire events over time in the Legal Amazon, while Figure 2
shows a graphical distribution of the fires over time and space. From July to October 2005 large areas of the
Amazon region experienced one of the most strong drought of the past 100 years (Marengo et al., 2008).
The event in 2005 was driven by elevated tropical North Atlantic sea surface temperatures associated with a
weaker cold anomaly in the South Atlantic (Marengo et al., 2008; Cox et al., 2008), and caused intense forest
fire. After the peak in 2005, the fire occurrence in the Legal Amazon decreased until 2012, whereas from
2013 to 2020 forest fires increased (see Fig. 1). The spatial distribution of fire occurrence shows that forest
fires are more concentrated in the region called “arc of deforestation”, an area that extends from Maranhão
to Acre, but with a pattern of increasing toward central areas. Additionally, it is possible to note that most of
the fire events occur during the third and fourth quarter, the dry season (May to October).

Fig 1: Fires in Legal Amazon by quarter between 2003 and 2020

Since our data base includes fire occurrence of different causes, such as human sources (deliberately
or accidentally), and natural causes, it is important include explanatory variables in the analysis to control
the main fixed effects related to climatic conditions and to control for possible use of the soil in agricul-
tural activities. Thus, to explore the effects of climate change on fire patterns in the Legal Amazon, we
include explanatory variables, such as MODIS Land Cover Classification, and Koppen Climate Classifica-
tion system (Alvares et al., 2013). The MODIS land cover classification (see Appendix) uses the classifica-
tion scheme defined by the International Geosphere-Biosphere Programme (IGBP) (Loveland and Belward,
1997), which includes 17 broad land cover and vegetation types. According to MODIS land cover, the Legal
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Fig 2: Spatial distribution of fires in Legal Amazon between 2003 and 2020

Amazon consists predominantly of tropical forest (evergreen broadleaf forests) but also of cerrado (shrub-
land and savannas, low tree cover), agriculture, and pasture land (cropland and cropland/natural vegetation
mosaic). The Koppen climate types (see Appendix) are characterized by two or three characters, where the
first indicate the climate zone defined by the temperature and rainfall, the second is defined by the rainfall
distribution and the third considers the sea seasonal temperature variation (Alvares et al., 2013). According
to Köppen Classification (Figure 2), the climate in the Legal Amazon is wet tropical (Am) in the central
areas, tropical with dry winter (Aw) in the South Eastern Amazon and tropical without dry season (Af) in
Western Amazon.

Evidence of intentional fire can be seen through the proximity of fire outbreaks and highways, as prox-
imity to highways implies in human accessibility and lower transportation costs for agricultural production.
Therefore, as explanatory variable, we also include the distance of fire occurrence from federal and state
highways. The data base containing the location of federal and state highways is provided by Departamento
Nacional de Infraestrutura de Transportes (DNIT) and Empresa de Planejamento e Logística (EPL).
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Fig 3: Köppen Climate Classification in Legal Amazon

3.2. Results. We perform inference procedure based on the the specification described in Equation (17).
Thus, the estimated parameters are the precision of the trend component (1/ηµ), seasonal component (1/ηs),
and cycle component (1/ηc), the parameters of the second-order autoregressive process of the cycle (PACF1
and PACF2), the parameters associated with the set of observed covariates (β), the parameters of spatial
covariance (log τ and logκ), and the parameter of spatial time dependence (Φ).

Table 1 reports the estimated parameters. As might be expected, the results indicate a negative relation
between the distance to roads and the fire occurrence. The importance of the highways as a prime driver of
fire occurrence and deforestation at local scales has been discussed in the literature, showing that the road
plays an important role facilitating transformation of land-use practices, creating fresh access to new settle-
ments in frontier regions, and reducing transportation costs in earlier settled areas (Ferraz, 2001; Fearnside,
2006).

As described earlier, the climate of the Legal Amazon, according to Köpper classification, are mostly wet
climate, occurring precipitation in all months of the year (Af), monsoon, with a mean annual total precipita-
tion > 1500mm and a dry season occurring between August and November (Am), and tropical with dry sea-
son (Aw). As expected, obtained results suggest that the Am and Aw types of climate have higher influence
on fire occurrence than Af type of climate. Furthermore, the results associated to land cover classifications
show a positive relation between fire occurrence and savannas (S), woody savannas (WS), grasslands (G),
and wetland ecosystems (PW). In these type of landscape, categorized as fire-dependent/influenced land-
scape, natural low-intensity fire regimes are mainly associated to the occurrences of lightening during wet
season (Alves and Pérez-Cabello, 2017). On the other hand, the estimated parameters indicate a negative re-
lation between fire occurrence and croplands (C), and urban and built-up lands (U). Although fire is widely
used to convert natural forest into pastureland and cropland, the presence of cropland or pasture can reduce
fire occurrence in the surrounding landscape by muting burned area (Archibald et al., 2009; Andela and Van
Der Werf, 2014). Additionally, humans have manipulated fire regimes for several thousand years, suppress-
ing wildfires to protect lives and properties, and creating landscapes that inhibit large-scale fire spread. As a
consequence, such anthropogenic influences result in fire regimes that differ in terms of frequency, severity,
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TABLE 1
Estimated Parameters

Mean SD 0.025quant 0.5quant 0.975quant Mode

Fixed effects
Distance Highways -0.014 0.001 -0.016 -0.014 -0.011 -0.014
Köppen 1 (Cwa) -0.386 0.255 -0.888 -0.386 0.114 -0.386
Köppen 2 (Am) 0.458 0.068 0.326 0.458 0.591 0.458
Köppen 3 (Af) 0.081 0.096 -0.107 0.081 0.268 0.081
Köppen 4 (Cfa) -0.561 0.275 -1.102 -0.561 -0.024 -0.560
Köppen 10 (As) -0.328 0.187 -0.696 -0.328 0.039 -0.328
Köppen 12 (Aw) 0.357 0.144 0.074 0.357 0.640 0.357
Land Cover 4 (DBF) 0.443 0.146 0.156 0.443 0.730 0.443
Land Cover 5 (MF) -0.245 0.296 -0.827 -0.245 0.334 -0.245
Land Cover 8 (WS) 0.056 0.072 -0.085 0.056 0.197 0.056
Land Cover 9 (S) 0.111 0.057 -0.001 0.111 0.222 0.111
Land Cover 10 (G) 0.042 0.062 -0.079 0.042 0.163 0.042
Land Cover 11 (PW) 0.168 0.125 -0.078 0.168 0.414 0.168
Land Cover 12 (C) -0.066 0.112 -0.286 -0.066 0.153 -0.066
Land Cover 13 (U) -0.198 0.328 -0.842 -0.198 0.446 -0.197
Land Cover 17 (WB) 0.190 0.118 -0.042 0.190 0.422 0.191

Random Effects
Precision for trend 75.270 9.664 55.629 75.786 92.789 78.179
Precision for seasonality 27.048 2.334 22.959 26.866 32.107 26.407
Precision for cycle 6.626 0.577 5.523 6.619 7.788 6.627
PACF1 for cycle -0.366 0.140 -0.645 -0.353 -0.148 -0.241
PACF2 for cycle 0.147 0.055 0.038 0.148 0.252 0.151
Log τ -2.139 0.013 -2.164 -2.139 -2.113 -2.139
Log κ -0.105 0.013 -0.129 -0.105 -0.078 -0.107
Group Φ 0.859 0.005 0.847 0.859 0.868 0.860

Note: DBF: deciduous broadleaf forests. MF: mixed forests. WS: woody savannas. S:
savannas. G: grasslands. PW: permanent wetlands. C: croplands. U: urban and built-up
lands. WB: water bodies.

and seasonality from how ecosystems would burn in the absence of humans (Rabin et al., 2015; Syphard
et al., 2017).

In relation to the random effects, the precision parameters represent the variability associated with the
trend, seasonal and cycle components, where high values indicate low variability. Based on the results re-
ported in the Table 1, it is possible to note a high precision associated with the seasonal component as well
as the trend component, whereas the cycle component shows a relatively minor precision.

A primary empirical motivation for the present study was to assess the existence of changes in the patterns
of fire occurrence in the Legal Amazon. To better understanding the results, we plotted the estimated trend,
seasonal and cycle components (posterior mean and 95% Bayesian credibility interval; see Fig. 4). The trend
component exhibit a relatively stable pattern, with a decrease between 2006 and 2012, which was brought
about by a variety of factor, including governance measures and market mechanisms. First, decreases in agri-
cultural output prices, and the availability of official rural credit may have contributed to changes in farmers’
production decisions and thereby inhibiting the forest clearing for the expansion of farmland, reducing fire
occurrences. While price increases provide incentive to expand the production, price decreases contribute to
the opposite behavior and thereby reduce the deforestation, and consequently, decrease the fire occurrence.
Similarly, official credit may be used to increase rural production, increasing fire occurrence by incorporat-
ing new lands for production, while credit constraints may lead to decreases in fire occurrence. Second, the
set of policies adopted to reduce the deforested area underwent significant revisions during 2000s, introduc-
ing innovative procedures for monitoring, environmental control, and territorial management, such as the
Action Plan for the Prevention and Control of Deforestation in the Legal Amazon (PPCDAm) launched in
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2004. Additionally, novel policy measures were implemented in 2008, targeting municipalities with critical
rates of deforestation and constraining rural credit (Assunção et al., 2015). The effectiveness of the policies
and how the market mechanisms have impacted the deforestation in the Legal Amazon has been widely
discussed in the literature, showing that, in general, the conservation policies, the decreases in agricultural
prices, and the availability of rural credit has curbed deforestation (e.g., Assunçãoa et al. (2013); Hargrave
and Kis-Katos (2013); Assunção et al. (2015)). Also, it is worth noting that, after 2012, the long-term com-
ponent shows a pattern of growth, but without reaching the level of 2003. Furthermore, our model also
captured important variations in the seasonal component, where it is possible to see a decrease in the range
of seasonal fire occurrence, i.e., the fire occurrence has become more consistent throughout the year in the
Legal Amazon, providing evidence of the increasing of fuel management practices occurring during the
nonfire season, suggesting the expansion of agricultural production.

(a) Trend (b) Seasonal

(c) Cycle

Fig 4: Trend, Seasonal and Cycle decomposition of fire occurrences in the Legal Amazon.

Additionally, it is possible to model the trend component as a second-order random walk (RW2), which
imposes a smoothness structure that is able to identify the trend component. The RW2 structure can be
thought as a non-parametric trend structure since it can be related to spline models (e.g. Green and Silverman
(1994); Rue and Held (2005); Lindgren and Rue (2008)), which allows to identify the persistent patterns of
long-term change. Therefore, in order to compare the results, we also performed inference procedure with
the dependency structure in the trend component modelled as

(18) ∆2µt = µt − 2 µt+1 + µt+2 ∼N(0, σ2
ηµ).
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With the trend component modeled as RW2, the model was able to capture a growth pattern in the trend
component between 2013 and 2016, and after 2018 (see Fig. 5). It is worth noting that the increasing of
fire occurrence have trended upward since 2013, reaching a peak in 2016. Along with population growth,
investment, and new roads, more international markets were opening for Brazilian beef during this period,
increasing the pressure on forests. More importantly, the Brazil’s Forest Code (Law 4771/1965) was re-
placed by Law 12651/2012, reducing restrictions and pardoning areas of illegal clearing done by 2008,
causing significant environmental and social issues (Fearnside, 2017). Aggravating the situation was the
political uncertainty and the atypical activities surrounding Dilma Rousseff’s impeachment proceeding in
2016, which offered an opportunity to approve legislative initiatives to remove environmental restrictions
(Fearnside, 2016). Furthermore, market conditions may have contributed to the increase in the fire occur-
rence in 2016, such as the low value of the Brazilian real relative to the US dollar, increasing the exportation
of soy and beef (Fearnside, 2017).

Also, our proposed model captured the increasing of fire occurrences after 2018, which may be linked
to the recent Brazilian environmental policies adopted by former President Michel Temer and also by the
current president, Jair Bolsonaro. Michel Temer assumed Brazilian presidency in June 2016, supported by
conservative politicians linked to the production of agricultural commodities or financed by agribusiness
groups. The measures approved by Temer including the PEC 65, which eliminated the need for environmen-
tal licensing for construction and stimulated the constructions of highways and dams in the Amazon region,
potentially increasing deforestation rates. Also, the government established a cap for public spending growth
over 20-year period (PEC 241), affecting the Ministry of Environment, which is responsible for important
national institutes that directly control the Amazon regions, such as the Brazilian Institute of Environment
and Renewable Natural Resources (IBAMA) and the Chico Mendes Institute for Biodiversity Conservation
(ICMBio) (Pereira et al., 2019). Similarly, Jair Bolsonaro, which have assumed Brazilian presidency in 2019
and, in exchange for political support of the ruralist group, he introduced several measures that encourage
the expansion of agriculture and livestock, such as drastic reduction in funds for controlling and monitoring
Amazon forest and freer use of agrochemicals and pesticides, leads to substantial environmental damage
(Pereira et al., 2020).

The spatial heterogeneity of the fire occurrence in the Legal Amazon can be seen through the estimated
spatial random effect, where the trend component was modeled as RW2 (posterior mean of estimated spatial
random effect; see Fig. 6). It is possible to observe that the spatial random effects capture the variability
in the Legal Amazon, especially in the regions classified as wet tropical (Am), which is characterized by
a dry season, that occurs between August and November (third and fourth quarters), and tropical with dry
season (Aw). On the other hand, in western Amazon, where the climate is predominantly tropical without
dry season (Af), the variability is low. Additionally, to show the model’s ability to fit the fire occurrence, we
plotted the estimated log intensity function and the observed fire occurrence (black dots; see Fig. 7), which
shows that the estimated log intensity function explains the spatio-temporal variation observed in the fire
count in the Legal Amazon, suggesting that the model has a good fit.

4. Conclusion. The Amazon biome plays an important role in the climate system, with relevance at
regional and global scales. Fire occurrences, related to both natural and anthropogenic activities, are relevant
disturbances in the Legal Amazon, with significant effects. Changes in the patterns of fire occurrence in the
Amazon region have been widely reported in the literature and are related with a variety of factors, including
dry conditions, deforestation, agricultural expansion, climate changes, and climatic anomalies such as El
Ninõ events.

The purpose of this paper was to analyze the existence of changes in the patterns of the fire occurrence in
the Legal Amazon, within the spatio-temporal point process framework. To perform inference procedures,
we proposed a structural decomposition to spatio-temporal point pattern data. In particular, we proposed
to use a dynamic representation of a Log Gaussian Cox process where the intensity function was modeled
through the decomposition of components into trend, seasonality, cycles, covariates and spatial effects. This
useful formulation was able to capture permanent changes in the fire occurrence and also, to identify seasonal
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(a) Trend (b) Seasonal

(c) Cycle

Fig 5: Trend, Seasonal and Cycle decomposition of fire occurrences in the Legal Amazon - RW2

and cyclic effects. Plus, the resulting Bayesian hierarchical structure allowed us to perform inference in a
computationally effective way within the integrated nested Laplace approximation framework.

We presented here, the results of analyzing data for fire occurrence in the Legal Amazon reported by
MODIS, from January 2003 to February 2020. Also, we included explanatory variables to control the main
fixed effect related to climatic conditions and the use of the soil in agricultural activities. Our results showed
that long-term movements of fire occurrence dropped considerably between 2006 and 2012, which suggest
that conservation regulations and/or market conditions in the mid-2000s were effective in reducing the de-
forestation rates and, consequently, decreasing the fire occurrence. Also, our model captured an increase in
the trend component between 2013 and 2016, and after 2018, which maybe explained by localized drivers,
such as population growth, investments, and roads, associated with political measures that encourage the ex-
pansion of agriculture and livestock. Furthermore, variations in the estimated seasonal component provided
evidence that the fire occurrence has become more consistent throughout the year, suggesting the increase
of fuel management practices occurring during the nonfire season, which is related to the expansion of
agricultural production.
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APPENDIX: LAND COVER AND CLIMATE CLASSIFICATION

TABLE 2
Köppen Climate Classification (Alvares et al., 2013)

Characters Description
Cwa (C) Humid subtropical (w) With dry winter (a) and hot summer.
Am (A) Tropical (m) monsoon.
Af (A) Tropical (f) without dry season.
Cfa (C) Humid subtropical (f) Oceanic climate, without dry season (a) and hot summer.
Cwb (C) Humid subtropical (w) With dry winter (b) and temperate summer.
Csb (C) Humid subtropical (s) With dry summer (b) and temperate summer.
Csa (C) Humid subtropical (s) With dry summer (a) and hot summer.
Cfb (C) Humid subtropical (f) Oceanic climate, without dry season (b) and temperate summer.
BSh (B) Dry (S) Semi-arid (h) low latitude and altitude.
As (A) Tropical (s) with dry summer.
Cwc (C) Humid subtropical (w) With dry winter and (c) short and cool summer.
Aw (A) Tropical (w) with dry winter.

TABLE 3
MODIS land cover classification legend and class descriptions (Sulla-Menashe and Friedl, 2018)

Name Value Description
Evergreen Needleleaf Forests 1 Dominated by evergreen conifer trees (canopy>2m). Tree cover >60%
Evergreen Broadleaf Forests 2 Dominated by evergreen broadleaf and palmate trees (canopy>2m). Tree cover >60%
Deciduous Needleleaf Forests 3 Dominated by decidous needleaf (larch) trees (canopy >2m). Tree cover >60%
Deciduous Broadleaf Forests 4 Dominated by decidous broadleaf trees (canopy >2m). Tree cover >60%
Mixed Forests 5 Dominated by neither decidous nor evergreen (40-60% of each) tree type (canopy

>2m). Tree cover >60%
Closed Shrublands 6 Dominated by woody perennials (1-2m height) >60% cover
Open Shrublands 7 Dominated by woody perennials (1-2m height) 10-60% cover
Woody Savannas 8 Tree cover 30-60% (canopy >2m)
Savannas 9 Tree cover 10-30% (canopy >2m)
Grasslands 10 Dominated by herbaceous annuals (<2m)
Permanent Wetlands 11 Permanently inundated lands with 30-60% water cover and >10% vegetated cover
Croplands 12 At leastt 60% of area is cultivated cropland
Urban and Built-up Lands 13 At least 30% impervious surface area including building materials, asphalt, and vehi-

cles.
Cropland/Natural Vegetation
Mosaics

14 Mosaics of small-scale cultivation 40-60% with natural tree, shrub, or herbaceous
vegetation

Permanent Snow and Ice 15 At least 60% of area is covered by snow and ice for at least 10 months of the year
Barren 16 At least 60% of area is non-vegetated barren (sand, rock, soil) areas with less than

10% vegetation
Water Bodies 17 At least 60% of area is covered by permanent water bodies
Unclassified 255 Has not received a map label because of missing inputs
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